At STP one mol weighs 22.4L
Moles of O_2
1 mol.O_2 can create 2mol water
moles of water
Volume of water
Answer:
1. K<10−3
Explanation:
Equilibrium Constant is an expression which involves the concentration of the product divided by the concentration of the reactant molecules.
However the concentration of the pure liquid and pure solid is regarded as 1.
Equilibrium expression for the equation 2H2(g)+O2(g)⇌2H2O(g)
Equilibrium Constant = [H2O]^2/[H2]^2 x [O2]
Since H2O is a pure liquid, its concentration = 1
There fore;
Equilibrium Constant = 1/[H2]^2 x [O2]
This shows that the Equilibrium Constant of the equation will be less than 1 and greater than 0.
Crystallization is: A chemical of solid - liquid separation technique, in which mass transfers a solute from the liquid solution to a pure solid crystalline phase occurs. In chemical engineering crystallization occurs in a crystallizer.
Hope I helped!
- Debbie
<span />
<u><em>The process of how we would obtain </em></u><u><em>ethanal</em></u><u><em> </em></u><u><em>free</em></u><u><em> from ethanol is described in the explanations below. </em></u>
<u><em /></u>
- In Chemistry, Ethanol undergoes oxidation in the presence of sodium dichromate plus sulphuric acid to yield ethanal and water.
The procedure for achieving this in the laboratory is as follows;
- Step 1; Measure a quantity of a solution of sodium dichromate acidified in a dilute sulphuric acid and pour into a test tube.
- Step 2; Add excess <em>ethanol</em>. This is because if we don't do so there will be plenty of oxidizing agent to carry out a second operation which changes the aldehyde to ethanoic acid. However, we need only the aldehyde.
- Step 3; When the aldehyde ethanal begins to form which will be evident by the change in the colour of solution from <em>orange to green</em>, then the mixture should be distilled from the test tube and tbethe aldehyde collevted so that it doesn't undergo additional oxidation into ethanoic acid.
Read more at; https://brainly.in/question/18574624
Answer:
KI
Explanation:
From the question, we can see that a qualitative analysis of the compound shows that it has a lilac flame colour. The lilac flame colour corresponds to the potassium ion (K^+).
Again, the test of addition of HNO3(aq) and AgNO3(aq) to a solution is a test for halogens. If the result is a green precipitate, then the ion present is the iodide ion (I^-).
Hence, the compound must be KI.