Mount. everest is 5.499 miles
Explanation:
Tremendous heat and pressure within the earth cause the hot magma to flow in convection currents. These currents cause the movement of the tectonic plates that make up the earth's crust.
Since the ladder is standing, we know that the coefficient
of friction is at least something. This [gotta be at least this] friction
coefficient can be calculated. As the man begins to climb the ladder, the
friction can even be less than the free-standing friction coefficient. However,
as the man climbs the ladder, more and more friction is required. Since he
eventually slips, we know that friction is less than what's required at the top
of the ladder.
The only "answer" to this problem is putting lower
and upper bounds on the coefficient. For the lower one, find how much friction
the ladder needs to stand by itself. For the most that friction could be, find
what friction is when the man reaches the top of the ladder.
Ff = uN1
Fx = 0 = Ff + N2
Fy = 0 = N1 – 400 – 864
N1 = 1264 N
Torque balance
T = 0 = N2(12)sin(60) – 400(6)cos(60) – 864(7.8)cos(60)
N2 = 439 N
Ff = 439= u N1
U = 440 / 1264 = 0.3481
Answer:
Magnitude of the Frictional force = (mv₀²)/2x₁
Explanation:
For the frictional force to stop the box, it has to produce the deceleration of the box; thereby being the opposing force to the box's motion.
According to Newton's first law of motion
Frictional force = (mass of the box) × (deceleration experienced by the box)
Let the mass of the box be m
Then,
Frictional force = ma
Then we can obtain the deceleration using the equations of motion
v² = u² + 2ax
u = Initial velocity = v₀ m/s
v = Final velocity = 0 m/s (since the box comes to rest at the end)
x = horizontal distance covered = (x₁ - x₀) = x₁ (since x₀ = 0)
a = ?
v² = u² + 2ax
0 = (v₀)² + 2ax₁
2ax₁ = - v₀²
a = - (v₀²)/(2x₁) (minus sign, because it's a deceleration)
Magnitude of the Frictional force = ma = (mv₀²)/2x₁