Answer:
As per the law of conservation of angular momentum, the angular velocity will be higher for the body with a lower moment of inertia and vice versa.
Explanation:
Angular momentum L of a body is given by:
Now when the same angular momentum is transferred to two different bodies with different moment of inertia, the body with a higher moment of inertia will have lower angular velocity and vice versa.
The average speed is the distance (a scalar quantity) per time ratio. Speed is ignorant of direction. On the other hand, velocity is a vector quantity; it is direction-aware. Velocity is the rate at which the position changes.
Ok so use trigonometry to work out the vertical component of velocity.
sin(25) =opp/hyp
rearrange to:
30*sin(25) which equals 12.67ms^-1
now use SUVAT to get the time of flight from the vertical component,
V=U+at
Where V is velocity, U is the initial velocity, a is acceleration due to gravity or g. and t is the time.
rearranges to t= (V+u)/a
plug in some numbers and do some maths and we get 2.583s
this is the total air time of the golf ball.
now we can use Pythagoras to get the horizontal component of velocity.
30^2-12.67^2= 739.29
sqrt739.29 = 27.19ms^-1
and finally speed = distance/time
so--- 27.19ms^-1*2.583s= 70.24m
The ball makes it to the green, and the air time is 2.58s
Answer:
1.11 m/s
Explanation:
The motion of the boat is an example of accelerated motion, since the velocity is not constant. However, we don't need to find the acceleration, because we are only interested in the average velocity of the boat, which is given by:
where d is the total distance covered and t the time taken. In this problem, the boat covered a distance of d = 20 m and it takes t = 18 s, therefore the average velocity is
Yes. Power will decrease.
'cause Power = Work / time
So, power is indirectly proportional to time so, when one increases other would decrease
Hope this helps!