Answer:
The <u>equilibrium constant</u> is:

Explanation:
The correct equation is:
Thus, with the equilibrium concentrations you can calculate the equilibrium constant, Kc.
The equation for the equilibrium constant is:
![k_c=\dfrac{[NH_3]^2}{[N_2]\cdot [H_2]^3}](https://tex.z-dn.net/?f=k_c%3D%5Cdfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5Ccdot%20%5BH_2%5D%5E3%7D)
Substituting:


Answer:
Explanation:
mole of O₂ = 
= .25 moles
mole of CO₂
= 
= .1818 moles
moles of SO₂

= .125 moles
Total moles of gas
= .5568 moles.
total volume of gas mixture
= 22.4 x .5568 liter ( volume of one mole of any gas = 22.4 liter)
= 12.47 liter.
gas will exert partial pressure according to their mole fraction
gas having greatest no of moles in the total mole will have greatest mole fraction so
O₂ will have greatest partial pressure.
Answer:What should you do if you realize during research that your original theory is wrong
Explanation:
Answer: The molality of solution is 17.6 mole/kg
Explanation:
Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.
where,
n = moles of solute
= weight of solvent in kg
moles of acetone (solute) = 0.241
moles of water (solvent )= (1-0.241) = 0.759
mass of water (solvent )=
Now put all the given values in the formula of molality, we get
Therefore, the molality of solution is 17.6 mole/kg
<span>d. filters out harmful ultraviolet radiation</span>