A few different ways to do this:
Way #1:
The current in the series loop is (12 V) / (total resistance) .
(Turns out to be 2 Amperes, but the question isn't asking for that.)
In a series loop, the current is the same at every point, so it's
the same current through each resistor.
The power dissipated by a resistor is (current)² · (resistance),
and the current is the same everywhere in the circuit, so the
smallest resistance will dissipate the least power. That's R1 .
And by the way, it's not "drawing" the most power. It's dissipating it.
Way #2:
Another expression for the power dissipated by a resistance is
(voltage across the resistance)² / (resistance) .
In a series loop, the voltage across each resistor is
[ (individual resistance) / (total resistance ] x battery voltage.
So the power dissipated by each resistor is
(individual resistance)² x [(battery voltage) / (total resistance)²]
This expression is smallest for the smallest individual resistance.
(The other two quantities are the same for each individual resistor.)
So again, the least power is dissipated by the smallest individual resistance.
That's R1 .
Way #3: (Einstein's way)
If we sat back and relaxed for a minute, stared at the ceiling, let our minds
wander, puffed gently on our pipe, and just daydreamed about this question
for a minute or two, we might have easily guessed at the answer.
===> When you wire up a battery and a light bulb in series, the part
that dissipates power, and gets so hot that it radiates heat and light, is
the light bulb (some resistance), not the wire (very small resistance).
Answer: acceleration = slope graph velocity vs time
Explanation: if you have the graph of velocity vs time , the slope of that graph equals the acceleration of our object assuming constant acceleration...but remenber por a real object is really hard to keep constant acceleration
Answer:
speed of each marble after collision will be 1.728 m/sec
Explanation:
We have given mass of the marble 
Velocity of marble 
Its collides with other marble of mass 25 gram
So mass of other marble 
Second marble is at so 
We have to find the velocity of second marble
From momentum conservation we know that
, here v is common velocity of both marble after collision
So 
v = 1.428 m /sec
So speed of each marble after collision will be 1.728 m/sec
Answer:
Kinetic Energy
Explanation:
Ang prinsipyo ay nagsasaad na ang enerhiya ay hindi maaaring malikha o masira, ngunit maaari lamang ma-convert mula sa isang anyo patungo sa isa pa. Ang tubig sa tuktok ng napakataas na talon ay nagtataglay ng gravitational potential energy. Habang bumabagsak ang tubig, ang enerhiya na ito ay na-convert sa kinetic energy, na nagreresulta sa isang daloy sa isang mataas na bilis.
The correct option is C.
J.J Thompson demonstrated that Dalton's model of the atomic theory was wrong by showing that atoms are made up of sub particles, this is contrary to the report that Dalton gave about atoms. In his experiment, Dalton reported that atoms are indivisible, that is, they can not be broken down into smaller particles. J.J Thompson on the other was able to show through his cathode ray experiment that atoms are made up of smaller particles called electrons.