Answer:
330 km
55*6= 330 km. An easy formula for this is multiplying time with speed.
Explanation:
330 kilometros
55 * 6 = 330 km. Una fórmula fácil para esto es multiplicar el tiempo por la velocidad.
Answer:
vi = 4.77 ft/s
Explanation:
Given:
- The radius of the surface R = 1.45 ft
- The Angle at which the the sphere leaves
- Initial velocity vi
- Final velocity vf
Find:
Determine the sphere's initial speed.
Solution:
- Newton's second law of motion in centripetal direction is given as:
m*g*cos(θ) - N = m*v^2 / R
Where, m: mass of sphere
g: Gravitational Acceleration
θ: Angle with the vertical
N: Normal contact force.
- The sphere leaves surface at θ = 34°. The Normal contact is N = 0. Then we have:
m*g*cos(θ) - 0 = m*vf^2 / R
g*cos(θ) = vf^2 / R
vf^2 = R*g*cos(θ)
vf^2 = 1.45*32.2*cos(34)
vf^2 = 38.708 ft/s
- Using conservation of energy for initial release point and point where sphere leaves cylinder:
ΔK.E = ΔP.E
0.5*m* ( vf^2 - vi^2 ) = m*g*(R - R*cos(θ))
( vf^2 - vi^2 ) = 2*g*R*( 1 - cos(θ))
vi^2 = vf^2 - 2*g*R*( 1 - cos(θ))
vi^2 = 38.708 - 2*32.2*1.45*(1-cos(34))
vi^2 = 22.744
vi = 4.77 ft/s
Answer:
50 N
Explanation:
Since the refrigerator doesn’t move, that means the force of friction equals the amount of force the child exerts on the fridge. If the friction force were greater than the force by the child, the fridge would start accelerating towards the child. If it were less than the force the child exerted, the fridge would start accelerating away from the child. Therefore, the net force must be 0, in this case, the friction force is equal to the force the child exerted, for it to stay at rest (as Newton’s First Law stated).
I hope this helps! :)
Answer:
Temperature
Explanation:
Heat only flows from one point to the other due to the difference in temperature.
Setting up an integral of
rotation is used as a method of of calculating the volume of a 3D object formed
by a rotated area of a 2D space. Finding the volume is similar to finding the
area, but there is one additional component of rotating the area around a line
of symmetry.
<span>First the solid of revolution
should be defined. The general function
is y=f(x), on an interval [a,b].</span>
Then the curve is rotated
about a given axis to get the surface of the solid of revolution. That is the
integral of the function.
<span>It all depends of the
function f(x), which must be known in order to calculate the integral.</span>