Answer:

Solution:
Note: Refer the diagram


Drag coefficient data for selected objects table at
Hemisphere (open end facing flow), 
Substituting all parameters,

Then,
![\begin{aligned}&V_{b}=V_{w}-\left[\frac{2 F_{R}}{\rho\left(C_{D, w} A_{w}+C_{D, B} A_{b}\right)}\right]^{\frac{1}{2}} \dots\\&V_{w}=24 \times 1000 \times \frac{1}{3600}\\&V_{w}=6.67 \frac{ m }{ s }\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26V_%7Bb%7D%3DV_%7Bw%7D-%5Cleft%5B%5Cfrac%7B2%20F_%7BR%7D%7D%7B%5Crho%5Cleft%28C_%7BD%2C%20w%7D%20A_%7Bw%7D%2BC_%7BD%2C%20B%7D%20A_%7Bb%7D%5Cright%29%7D%5Cright%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cdots%5C%5C%26V_%7Bw%7D%3D24%20%5Ctimes%201000%20%5Ctimes%20%5Cfrac%7B1%7D%7B3600%7D%5C%5C%26V_%7Bw%7D%3D6.67%20%5Cfrac%7B%20m%20%7D%7B%20s%20%7D%5Cend%7Baligned%7D)
And the equation becomes,
![\begin{aligned}&V_{b}=6.67-\left[\frac{2 \times 5.52}{1.23(1.42 \times 1.17+1.2 \times 0.3)}\right]^{\frac{1}{2}}\\&V_{b}=6.67-2.11\\&V_{b}=4.56 \frac{ m }{ s }\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%26V_%7Bb%7D%3D6.67-%5Cleft%5B%5Cfrac%7B2%20%5Ctimes%205.52%7D%7B1.23%281.42%20%5Ctimes%201.17%2B1.2%20%5Ctimes%200.3%29%7D%5Cright%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%26V_%7Bb%7D%3D6.67-2.11%5C%5C%26V_%7Bb%7D%3D4.56%20%5Cfrac%7B%20m%20%7D%7B%20s%20%7D%5Cend%7Baligned%7D)
Thus the floyds travels at
wind speed.
Answer:
0.19s
Explanation:
Queueing delay is the time a job waits in a queue before it can be executed. it is the difference in time betwen when the packet data reaches it destination and the time when it was executed.
Queueing delay =(N-1) L /2R
where N = no of packet =93
L = size of packet = 4MB
R = bandwidth = 1.4Gbps = 1×10⁹ bps
4 MB = 4194304 Bytes
(93 - 1)4194304 / 2× 10⁹
queueing delay =192937984 ×10⁻⁹
=0.19s
Answer:
A. 72.34mol/min
B. 76.0%
Explanation:
A.
We start by converting to molar flow rate. Using density and molecular weight of hexane
= 1.59L/min x 0.659g/cm³ x 1000cm³/L x 1/86.17
= 988.5/86.17
= 11.47mol/min
n1 = n2+n3
n1 = n2 + 11.47mol/min
We have a balance on hexane
n1y1C6H14 = n2y2C6H14 + n3y3C6H14
n1(0.18) = n2(0.05) + 11.47(1.00)
To get n2
(n2+11.47mol/min)0.18 = n2(0.05) + 11.47mol/min(1.00)
0.18n2 + 2.0646 = 0.05n2 + 11.47mol/min
0.18n2-0.05n2 = 11.47-2.0646
= 0.13n2 = 9.4054
n2 = 9.4054/0.13
n2 = 72.34 mol/min
This value is the flow rate of gas that is leaving the system.
B.
n1 = n2 + 11.47mol/min
72.34mol/min + 11.47mol/min
= 83.81 mol/min
Amount of hexane entering condenser
0.18(83.81)
= 15.1 mol/min
Then the percentage condensed =
11.47/15.1
= 7.59
~7.6
7.6x100
= 76.0%
Therefore the answers are a.) 72.34mol/min b.) 76.0%
Please refer to the attachment .
Answer:
safety glasses, hearing protection, respirator, work gloves, and work boots.
Explanation:
please give brainliest!! <3