Answer:
4057.85 g/mol
Explanation:
Hello, the numerical procedure is shown in the attached file.
- In this case, since we don't have the density of the protein, we must assume that the volume of the solution is solely given by the benzene's volume, in order to obtain the moles of the solute (protein).
-Van't Hoff factor is assumed to be one.
Best regards.
Answer:
28.2
Explanation:
Add all of the pressures, 55, 90, and 50, and divide 100 by the answer you get (195). You'll get 0.512820513 and multiply it by .55 (atm of Oxygen) and you'll get 28.2
Volume of Cl₂(g) is produced at 1.0 atm and 540.°C=4.5×10^4 L
As per the evenly distributed response
2NaCl (g) ----> 2Na(l)+ Cl2(g)
Calculate the amount of Cl2 that was formed as indicated below:
Moles of Cl2 = 31.0 kg of Na x (1000* 1 * 1 / 1*23* 2)
= 673.9 mol
P is equal to 1.0 atm, and T is equal to 813.15 K
when converted to Kelvin by multiplying by a factor of 273.15.
Using Cl2 as an ideal gas, determine the in the following volume:
volume = nRT/P
= 673.9 * 0.0821 * 813.15/ 1
=4.5×10^4 L
As a result, the volume of Cl2 under the given circumstances =4.5×10^4 L
Learn more about Volume here:
brainly.com/question/13338592
#SPJ4
<span>
You can do it on the icing of roads, reverse osmosis for desalination of water, dissolved CO2 in soda cans, osmotic pressure involving blood vessels and IV solutions, etc.</span>
4. Static, sliding,rolling,and fluid friction