To solve this problem it is necessary to apply the concewptos related to Torque, kinetic movement and Newton's second Law.
By definition Newton's second law is described as
F= ma
Where,
m= mass
a = Acceleration
Part A) According to the information (and as can be seen in the attached graph) a sum of forces is carried out in mass B, it is obtained that,
![\sum F = m_b a](https://tex.z-dn.net/?f=%5Csum%20F%20%3D%20m_b%20a)
![m_Bg-T_B = m_Ba](https://tex.z-dn.net/?f=m_Bg-T_B%20%3D%20m_Ba)
In the case of mass A,
![\sum F = m_A a](https://tex.z-dn.net/?f=%5Csum%20F%20%3D%20m_A%20a)
![T_A = m_Ag-m_Aa](https://tex.z-dn.net/?f=T_A%20%3D%20m_Ag-m_Aa)
Making summation of Torques in the Pulley we have to
![\sum\tau = I\alpha](https://tex.z-dn.net/?f=%5Csum%5Ctau%20%3D%20I%5Calpha)
![T_BR_0-T_AR_0=I\alpha](https://tex.z-dn.net/?f=T_BR_0-T_AR_0%3DI%5Calpha)
![T_B-T_A=I\frac{a}{R^2_0}](https://tex.z-dn.net/?f=T_B-T_A%3DI%5Cfrac%7Ba%7D%7BR%5E2_0%7D)
Replacing the values previously found,
![(m_Bg-m_Ba )-(m_Ag-m_Aa )=I\frac{a}{R^2_0}](https://tex.z-dn.net/?f=%28m_Bg-m_Ba%20%29-%28m_Ag-m_Aa%20%29%3DI%5Cfrac%7Ba%7D%7BR%5E2_0%7D)
![(m_B-m_A)g-(m_B+m_A)a=I\frac{a}{R^2_0}](https://tex.z-dn.net/?f=%28m_B-m_A%29g-%28m_B%2Bm_A%29a%3DI%5Cfrac%7Ba%7D%7BR%5E2_0%7D)
![a = \frac{(m_B-m_A)g}{\frac{I}{R_0^2}+(m_B+m_A)}](https://tex.z-dn.net/?f=a%20%3D%20%5Cfrac%7B%28m_B-m_A%29g%7D%7B%5Cfrac%7BI%7D%7BR_0%5E2%7D%2B%28m_B%2Bm_A%29%7D)
![a = \frac{(m_B-m_A)g}{\frac{MR^2_0^2/2}{R_0^2}+(m_B+m_A)}](https://tex.z-dn.net/?f=a%20%3D%20%5Cfrac%7B%28m_B-m_A%29g%7D%7B%5Cfrac%7BMR%5E2_0%5E2%2F2%7D%7BR_0%5E2%7D%2B%28m_B%2Bm_A%29%7D)
![a =\frac{(m_B-m_A)g}{\frac{M}{2}+(m_B+m_A)}](https://tex.z-dn.net/?f=a%20%3D%5Cfrac%7B%28m_B-m_A%29g%7D%7B%5Cfrac%7BM%7D%7B2%7D%2B%28m_B%2Bm_A%29%7D)
Replacing with our values
![a =\frac{(8-6.8)(9.8)}{\frac{0.8}{2}+(8+6.8)}](https://tex.z-dn.net/?f=a%20%3D%5Cfrac%7B%288-6.8%29%289.8%29%7D%7B%5Cfrac%7B0.8%7D%7B2%7D%2B%288%2B6.8%29%7D)
![a=0.7736m/s^2](https://tex.z-dn.net/?f=a%3D0.7736m%2Fs%5E2)
PART B) Ignoring the moment of inertia the acceleration would be given by
![a' =\frac{(m_B-m_A)g}{(m_B+m_A)}](https://tex.z-dn.net/?f=a%27%20%3D%5Cfrac%7B%28m_B-m_A%29g%7D%7B%28m_B%2Bm_A%29%7D)
![a' =\frac{(8-6.8)(9.8)}{(8+6.8)}](https://tex.z-dn.net/?f=a%27%20%3D%5Cfrac%7B%288-6.8%29%289.8%29%7D%7B%288%2B6.8%29%7D)
![a' = 0.7945](https://tex.z-dn.net/?f=a%27%20%3D%200.7945)
Therefore the error would be,
![\%error = \frac{a'-a}{a}*100](https://tex.z-dn.net/?f=%5C%25error%20%3D%20%5Cfrac%7Ba%27-a%7D%7Ba%7D%2A100)
![\%error = \frac{0.7945-0.7736}{0.7736}*100](https://tex.z-dn.net/?f=%5C%25error%20%3D%20%5Cfrac%7B0.7945-0.7736%7D%7B0.7736%7D%2A100)
![\%error = 2.7%](https://tex.z-dn.net/?f=%5C%25error%20%3D%202.7%25)