V ( HCl ) = 45.00 mL in liters : 45.00 / 1000 => 0.045 L
M ( HCl ) = ?
V ( NaOH ) = 25.00 / 1000 => 0.025 L
M ( NaOH) = 0.2000 M
number of moles NaOH :
n = M x V = 0.2000 x 0.025 => 0.005 moles of NaOH
Mole ratio:
HCl + NaOH = NaCl + H2O
1 mole HCl ---------- 1 mole NaOH
? mole HCl ---------- 0.005 moles NaOH
moles HCl = 0.005 x 1 / 1
= 0.005 moles of HCl :
M ( HCl ) = n / V
M ( HCl ) = 0.005 / 0.045
= 0.1111 M
hope this helps!
According to an article dated back in February 8, 1992 which is entitled, “Science: Stardust is made of diamonds” on a website called newscientist (https://www.newscientist.com/article/mg13318073-000-science-stardust-is-made-of-diamonds/), American astronomers believed that diamonds are made in supernova explosions. It was said that the diamonds were the foundation of uncommon combinations of isotopes found in some meteorites. Donald Clayton of Clemson University in South Carolina suggested that the weightiest isotopes were more common in meteorites for the reason that the rare gases shaped in the neutron-rich outcome of a supernova explosion. Clayton also said, “the observed mixture of isotopes could have been produced only during the collapse of a massive star to form a neutron star”. This happens in a Type II explosion, for example the Supernova 1987A in the Large Magellanic Cloud. And rare gases like xenon become stuck in both weighty and light isotopes after the ejected gas from such a supernova cools down enough to create dust. The existence of the diamonds with these unusual gases in meteorites infers an alike source. Some of the carbon in the supernova fragments produces ordinary graphite dust, whereas some produces diamond dust. Considerable amount of stardust may be made of diamonds, if Clayton was not mistaken.
<u>Answer:</u> The value of
of the reaction is 28.38 kJ/mol
<u>Explanation:</u>
For the given chemical reaction:

- The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(SO_2Cl_2(g))})]-[(1\times \Delta H^o_f_{(SO_2(g))})+(1\times \Delta H^o_f_{(Cl_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_2Cl_2%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28SO_2%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28Cl_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(1\times (-364))]-[(1\times (-296.8))+(1\times 0)]=-67.2kJ/mol=-67200J/mol](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-364%29%29%5D-%5B%281%5Ctimes%20%28-296.8%29%29%2B%281%5Ctimes%200%29%5D%3D-67.2kJ%2Fmol%3D-67200J%2Fmol)
- The equation used to calculate entropy change is of a reaction is:
![\Delta S^o_{rxn}=\sum [n\times \Delta S^o_f_{(product)}]-\sum [n\times \Delta S^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20S%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20S%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the entropy change of the above reaction is:
![\Delta S^o_{rxn}=[(1\times \Delta S^o_{(SO_2Cl_2(g))})]-[(1\times \Delta S^o_{(SO_2(g))})+(1\times \Delta S^o_{(Cl_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20S%5Eo_%7B%28SO_2Cl_2%28g%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20S%5Eo_%7B%28SO_2%28g%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20S%5Eo_%7B%28Cl_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta S^o_{rxn}=[(1\times 311.9)]-[(1\times 248.2)+(1\times 223.0)]=-159.3J/Kmol](https://tex.z-dn.net/?f=%5CDelta%20S%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20311.9%29%5D-%5B%281%5Ctimes%20248.2%29%2B%281%5Ctimes%20223.0%29%5D%3D-159.3J%2FKmol)
To calculate the standard Gibbs's free energy of the reaction, we use the equation:

where,
= standard enthalpy change of the reaction =-67200 J/mol
= standard entropy change of the reaction =-159.3 J/Kmol
Temperature of the reaction = 600 K
Putting values in above equation, we get:

Hence, the value of
of the reaction is 28.38 kJ/mol
A metal ion is a type of atom compound that has an electric<span> charge. </span>Such<span> atoms willingly lose electrons in order to build positive ions called cations.</span>