second compound
Let molar mass of x is = X
Let molar mass of y is = Y
Moles of x in second compound = Mass / molar mass = 7 / X
Moles of y in second compound = Mass / molar mass = 4.5 / Y
For second compound
7 / X : 4.5/ Y = 1:1
Therefore
X / Y = 7/4.5
Y / X = 4.5/ 7
The mass of x in first compound = 14g
moles of x in first compound = 14/X
Mass of y in first compound = 3
moles of y in first compound = 3 / Y
14 / X : 3/ Y = 14Y / 3X = 14 X 4.5 / 3 X 7 = 3 :1
Thus molar ratio in first compound = moles of x / Moles of y = 3:2
Formula = x3y
The bond dissociation energy of the Cl - Cl bond is -958 kJ mol^-1.
<h3>What is the dissociation enthalpy?</h3>
Given that;
H-H bond energy = 435 kJ mol^-1
H-Cl bond energy = 431 kJ mol^-1
ΔHfO of HCL(g) = -92kJ mol^-1
Bond dissociation enthalpy of the Cl-Cl bond = x
-92 = 435 + 431 + x
x = -92 - (435 + 431)
x = -958 kJ mol^-1
Learn More about dissociation enthalpy:brainly.com/question/9998007?
#SPJ1
Answer:
4.52 x 10¹⁴ cycles/s
Explanation:
From c = f·λ => f = c/λ = (3.0 x 10⁸ m/s)/(6.63 x 10⁻⁷m) = 4.52 x 10¹⁴ cycles/s.
f = frequency = ?
λ = wavelength = 6.63 x 10⁻⁷ meter
c = speed of light in vacuum = 3.0 x 10⁸ meters/s
dog!
this is because the first energy comes from plants bc they can make their own food— therefore, energy :)
This is false. An alcohol does indeed have a polar C-O single bond, but what we should really be focusing on is the extraordinarily polar O-H single bond. When oxygen, fluorine, or nitrogen is bound to a hydrogen atom, there is a small (but not negligible) charge separation, where the eletronegative N, O, or F has a partial negative charge, and the H has a partial positive charge. Water has two O-H single bonds in it (structure is H-O-H). The partially negative charge on the O of the water molecule (specifically around the lone pair) can become attracted either a neighboring water molecule's partially positive H atom, or an alcohol's partially positive H atom. This is weak (and partially covalent) attraction is called a hydrogen bond. This is stronger than a typical dipole-dipole attraction (as would be seen between neighboring C-O single bonds), and much stronger than dispersion forces (between any two atoms). When the solvent (water) and the solute (the alcohol) both exhibit similar intermolecular forces (hydrogen bonding being the most important in this case), they can mix completely in all proportions (i.e. they are miscible) in water.