Answer:

Explanation:
Hello!
In this case, since the combustion reaction of methanol is:

In such a way, since there is 1:3/2 mole ratio between methanol and oxygen, we can compute the moles of oxygen that are needed to burn 2.56 moles of methanol as shown below:

Best regards!
Answer:4
Explanation:
If we carefully observe the electronegativity of the elements in question
P-2.19
N-3.04
C-2.55
Si-1.9
H-2.2
SiH4 is definitely more polar than CH4 hence greater dipole forces of a higher boiling point. NH3 is more polar than PH3 hence NH3 has greater dipole forces and a higher boiling point. Electronegative differences influences the polarity of a bond. The greater the electro negativity difference between bonding atoms, the greater the dipole forces and the greater the boiling point.
THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.
Answer:The distribution of electrons in an atom is called as Electronic Configuration. Formula 2n2 helps in the determination of the maximum number of electrons present in an orbit, here n= orbit number.
Explanation:
Mg gained mass because it went from being a single element (on the reactant side) to being a molecule (on the product side).