The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s
<h3 /><h3>What is speed?</h3>
Speed can be defined as the ratio of the total distance traveled by a body to the total time taken.
To calculate the speed of the sound in the xenon, we use the formula below.
Formula:
- v = λf............. Equation 1
Where:
- v = Speed of the sound in xenon
- f = Frequency
- λ = Wavelength.
From the question,
Given:
- f = 440 Hz
- λ = 40.4 cm = 0.404 m
Substitute the values above into equation 1
- v = 440(0.404)
- v = 177.76 m/s.
- v ≈ 178 m/s
Hence, The speed of the sound in the xenon is 178 m/s. And the right option is b 178 m/s
Learn more about speed here: brainly.com/question/4931057
When Sam presses the brake lever, a pair of rubber shoes clamps onto the metal inner rim of the front and back wheels. As the brake shoes rub against the wheels, friction is caused and the kinetic energy possessed by the vehicle is converted into heat which slows down the vehicle.
Answer:
a
The time it would take the beef to reach a temperature of 0⁰C is t= 662 sec = 11.93 min
b)
The time it would take to heat the beef to uniform temperature of 80⁰C is
t = 365 sec =5.93 min
c
Efficient absorption of Microwave power is in regions of liquid water . Hence if the food or the microwave irradiation is not uniform, the power will be absorbed non-uniformly, resulting in a non-uniform temperature rise. Defrost region will absorb more energy per unit volume than frozen region.if food is of low thermal conductivity, there will be insufficient time for heat conduction to make the temperature more uniform.Use of low power allows more time for conduction to occur.
Explanation:
The explanation is shown on the first second and third uploaded image