Answer:
The law of conservation of mass states that in a closed system, mass is neither created nor destroyed during a chemical or physical reaction. The law of conservation of mass is applied whenever you balance a chemical equation.
Explanation:
According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.
It is applicable in a chemical when the the mass of the products in a chemical reaction is equal to the mass of the reactants.
But it is not applicable in a nuclear fusion as some of the mass is generated as energy.
<span>Germane is the chemical compound with the formula GeH₄, and the germanium analogue of methane. It is the simplest germanium hydride and one of the most useful compounds of germanium.
</span>In chemistry, sigma bonds (σ bonds) are the strongest type of covalent chemical bond. They are formed by head-on overlapping between atomic orbitals. Sigma<span> bonding is most simply defined for diatomic molecules using the language and tools of symmetry groups.
</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Starting mass: 294
Mass ratio: 3/5
<h3><u>Answer;</u></h3>
D. It decreases and the pH increases.
<h3><u>Explanation;</u></h3>
- pH is a measure of the hydorgen ion concentration of a solution. Solutions with a high concentration of hydrogen ions have a low pH and solutions with a low concentrations of H+ ions have a high pH.
- <em><u>[H+] and [OH-] are inversely related. Therefore; As the concentration of H+ increases the pH decreases. Since the concentrations of H+ and OH- are inversely proportional, as one goes up, the other goes down. </u></em>
- <em><u>Therefore, an increase in OH- concentration will correspond to an increase in pH and a decrease in the concentration of H+.</u></em>