"The speed will increase" is the one among the following choices given in the question that describes the speed of a wave traveling through the rope, if <span>the tension in a rope is increased. The correct option among all the options that are given in the question is the first option. I hope that this is the answer that has come to your help.</span>
By using an electric field, it is feasible to differentiate between these different forms of radiation.
<h3>What is a radioactive source?</h3>
A source that emits radiation like gamma, beta, and alpha rays is said to be radioactive. Using an electric field, we can discriminate between these different forms of radiation.
The field does not deflate the gamma rays, but it does deflate the alpha and beta rays, with the alpha being deflated to the field's negative portion and the beta to its positive part.
Hence, by using an electric field, it is feasible to differentiate between these different forms of radiation.
To learn more about the radioactive source refer;
brainly.com/question/12741761
#SPJ1
For this question we should apply
a = v^2 - u^2 by t
a = 69 - 0 by 4.5
a = 69 by 4.5
a = 15.33
a = 6.85 m/s^2
If the answer in option is near to answer then , you can mark it as correct.
.:. The acceleration is 6.9 m/s^2
The black squirrel has zero kinetic energy (if it's not moving) and lower gravitational potential energy than the red squirrel or zero gravitational potential energy if the ground is assumed to be zero gravitational potential line.
Answer: acceleration due to gravity of planet a would be twice that of planet b. Given that the radius are thesame.
Explanation:
Acceleration due to gravity is as a result of the gravitational force of attraction of a planet to its centre.
g = GM/r^2
Where;
g = acceleration due to gravity
G = gravitational constant
M = mass of planet
r = radius of planet
Given that the two planet have the same radius, if the mass of planet a is twice the mass of planet b the the acceleration due to gravity of planet a would be twice that of planet b, because acceleration due to gravity is directly proportional to the mass of the planet.