Answer:
Its simple! B The ball accelerates upward!♡♡
Answer:
7.45 s.
Explanation:
Given:
h = 68.1 m
vi = 0 m/s
vf = 42.4 m/s
g = 9.81 m/s^2
Using,
h = vi*t +1/2*(a*t^2)
68.1 = 1/2 * (9.81*t^2)
t = sqrt((68.1*2)/9.81)
= 3.726 s.
Total time of flight = 2*t
= 2 * 3.726
= 7.45 s.
After a thorough research, there exists the same question that has choices and the link of the graph (http://i37.servimg.com/u/f37/16/73/53/52/graph410.png)
<span>Choices:
A. 160 meters
B. 80 meters
C. 40 meters
D. 20 meters
E. 0 meters
</span>
The correct answer is letter E. 0 meters.
The correct answer to the question above is that the magician is seeking the wavelength of the standing wave. The part of a standing sound wave, which is its wavelength, the magician is seeking when playing a musical note of a specific pitch.
Answer:
force for start moving is 7.49 N
force for moving constant velocity 2.25 N
Explanation:
given data
mass = 7.65 kg
kinetic coefficient of friction = 0.030
static coefficient of friction = 0.10
solution
we get here first weight of block of ice that is
weight of block of ice = mass × g
weight of block of ice = 7.65 × 9.8 = 74.97 N
so here Ff = Fa
so for force for start moving is
Fa = weight × static coefficient of friction
Fa = 74.97 × 0.10
Fa = 7.49 N
and
force for moving constant velocity is
Fa = weight × kinetic coefficient of friction
Fa = 74.97 × 0.030
Fa = 2.25 N