Q = mc(θ₂-θ₁)
47 calories = 10 g *c*(50.4 - 25)
47cal = 10*c* 25.4
47 /(10*25.4) = c
0.185 = c
Specific heat of iron = 0.185 cal/g°C
One half-life: 5 grams
Two half-lives: 2.5 grams
![\tt -\dfrac{1}{2}\dfrac{d[N_2O]}{dt}=\dfrac{1}{2}\dfrac{d[N_2]}{dt}=\dfrac{1}{1}\dfrac{d[O_2]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2O%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
<h3>Further explanation</h3>
Reaction
2N2O(g) — 2N2(g) + O2(g)
Required
relative rate
Solution
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
so the relative rates for the reaction above are :
![\tt -\dfrac{1}{2}\dfrac{d[N_2O]}{dt}=\dfrac{1}{2}\dfrac{d[N_2]}{dt}=\dfrac{1}{1}\dfrac{d[O_2]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2O%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B2%7D%5Cdfrac%7Bd%5BN_2%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7B1%7D%5Cdfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
- low conductivity
- generally non-toxic
- ductile
- doesn’t corrode as fast as other metals
I believe the correct answer from the choices listed above is the first option. The compound that contains both ionic and covalent bonding is KOH or potassium hydroxide. It contains one covalent<span> (O-H) and one that is </span>ionic<span> (K-O). Hope this helps.</span>