They have more energy than radio waves.
1. U = Q + W
U = -500 + 1000
U = 500 J
2. The first law of thermodynamic is about the law of conservation of energy where energy in should be equal to energy out.
3. It is the windmill that does not transform energy from heat to mechanical instead it is the transforms the opposite.
4. In a heat engine, work is used to transfer thermal energy from a hot reservoir to a cold one.
5. 5.00 × 10^4 J - 2.00 × 10^4 J = 3.00 × 10^4 J
6. To increase the work done, we raise the temperature of the cold reservoir.
M = mass of the bowling ball = 4 kg
V = speed of bowling ball = 3.93 m/s
P = magnitude of momentum of bowling ball = ?
magnitude of momentum of bowling ball is given as
P = MV
inserting the values
P = 4 x 3.93
P = 15.72 kgm/s
m = mass of ping-pong ball = 2.293 g = 2.293 x 10⁻³ kg
v = speed of the ping-pong ball = ?
p = magnitude of momentum of ping-pong ball
Given that :
magnitude of momentum of ping-pong ball = magnitude of momentum of bowling ball
p = P
m v = 15.72
(2.293 x 10⁻³) v = 15.72
v = 6.86 x 10³ m/s
Answer:
The answer to your question is : vf = 15.18 m/s
Explanation:
Data
vo = 24 m/s
d = 120 m
vf = ? when d = 60.0 m
Formula
vf² = vo² + 2ad
For d =100m
a = (vf² - vo²) / 2d
a = (0 -24²) / 2(100)
a = -576/200
a = 2.88 m/s²
Now, when d = 60
vf² = (24)² - 2(2.88)(60)
vf² = 576 - 345.6
vf² = 230.4
vf = 15.18 m/s
Answer:
897
Explanation:
Speed of the car, v = 126 km/h, converting to m/s, we have v = 35 m/s and
Radius of the curve, R = 150 mm = 0.15 m
The centripetal acceleration a(c) is given by the formula = v² / R so that
a(c) = 35² / 0.15
a(c) = 1225 / 0.15
a(c) = 8167 m/s²
The force that causes the acceleration is frictional force = µ m g, where
µ = coefficient of friction
m = the mass of the car and
g = acceleration due to gravity, 9.81
From Newton's law:
µ m g = m a(c) , so that
µ = a(c) / g
µ = 8167 / 9.81
µ = 897
Therefore, the coefficient of static friction must be as big as 897