Answer: This is true! Living organisms use two major types of energy storage.
Answer:
<h3>The answer is 150 kPa</h3>
Explanation:
The new pressure can be found by using the formula for Boyle's law which is

Since we are finding the new pressure

From the question we have

We have the final answer as
<h3>150 kPa</h3>
Hope this helps you
The mass of 63 ml sample : 79.38 g
<h3>Further explanation</h3>
Given
20 ml and 25.2 g of glycerol
Required
The mass of 63 ml sample
Solution
Density is the ratio of mass per unit volume
Density formula:

Density of glycerol :
= m : V
= 25.2 g : 20 ml
= 1.26 g/ml
Mass of 63 ml sample :
= density x volume
= 1.26 g/ml x 63 ml
= 79.38 g
If you have an aqueous solution that contains 1.5 moles of HCl, the number of moles of ions in the solution is 3.0 moles.
<h2>Further Explanation
</h2><h3>Strong acids </h3>
- Strong acids are types of acids that undergo complete dissociation to form ions when dissolved in water.
- Examples of such acids are, HCl, H2SO4 and HNO3
- Dissociation of HCl
HCl + H₂O ⇔ H₃O⁺ + OH⁻
<h3>Weak acids </h3>
- Weak acids are types of acids that undergo incomplete dissociation to form ions when dissolved in water.
- Examples of such acids are acetic acids and formic acids.
- Dissociation of acetic acid
H₃COOH ⇔ CH₃COO⁻ + H⁺; CH₃COO⁻ is a conjugate base of acetic acid.
<h3>In this case;</h3>
- HCl which is a strong acid that ionizes completely according to the equation;
HCl + H₂O ⇔ H₃O⁺ + OH⁻
- From the equation, 1 mole of HCl produces 1 mole of H₃O⁺ ions and 1 mole of OH⁻ ions.
Therefore;
1.5 moles of HCl will produce;
= 1.5 moles of H₃O⁺ ions and 1.5 moles of OH⁻ ions.
This gives a total number ions of;
= 1.5 + 1.5
= 3 moles of ions
Keywords: Strong acid, weak acid, ions, ionization
<h3>Learn more about: </h3>
Level: High school
Subject: Chemistry
Topic: Salts, Acids and Bases