Answer:
Option A. 39.2 m/s
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 4 s
Final velocity (v) =?
v = u + gt
Since the initial velocity (u) is 0, the above equation becomes:
v = gt
Thus, inputting the value of g and t, we can obtain the value of v as shown below:
v = 9.8 × 4
v = 39.2 m/s
Therefore, the velocity of the ball at 4 s is 39.2 m/s.
For a flower to be pollinated, pollen from an anther (which is located at the top of the stamen) needs to reach a stigma (at the top of the pistle.) Some plants are genetically capable of pollinating themselves if their own pollen reaches their own stigma; some plants are not capable of self pollination under any circumstances.
For plants that can genetically self pollinate, but would prefer not to, they can avoid this by having their pistil and pollen/stamens mature at different times. If the stamens mature first, the pollen will be dispersed by animals or wind or whatever dispersal mechanism it relies on. Then by the time the pistil is ready to be pollinated, there is no pollen left in that flower to land on the stigma.
Answer:

Explanation:
In the question given :
Pressure is constant
Therefore, Work done, 
Pressure, P=1.01 × 105 Pa.
Final volume, 
Initial volume, 
Therefore, W=8.58\times 10^{5}\ J.
Also, Heat Given, 
Also, according to First law of thermodynamics:

Hence, this is the required solution.
Answer:
P = 4.5 watts
Explanation:
Given that,
EMF of the circuit, E = 3 volt
The resistance of the resistors, R = 2 ohms
We need to find the power of this circuit. The relation between power, emf and resistance is given by the formula as follows :

Substitute all the values,

So, the power of this circuit is equal to 4.5 watts.
For every actions, there is an opposite reaction.