From the ones that you are showing me <span>the more positive the potential the more likely: </span>
<span>Fe+3 + e- ---> Fe+2
I hope this is something very useful</span>
Answer:
The mass of NaCl is 0.029 grams
Explanation:
Step 1: Data given
Molecular weight of NaCl = 58.44 g/mol
Volume of solution = 100 mL = 0.100 L
Molarity = 0.0050 M
Step 2: Calculate moles NaCl
Moles NaCl = molarity * volume
Moles NaCl = 0.0050 M * 0.100 L
Moles NaCl = 0.00050 moles
Step 3: Calculate mass NaCl
Mass NaCl = moles NaCl * molar mass NaCl
Mass NaCl = 0.00050 moles * 58.44 g/mol
Mass NaCl = 0.029 grams
The mass of NaCl is 0.029 grams
Answer:
5.3%
Explanation:
Let the volume be 1 L
volume , V = 1 L
use:
number of mol,
n = Molarity * Volume
= 0.8846*1
= 0.8846 mol
Molar mass of CH3COOH,
MM = 2*MM(C) + 4*MM(H) + 2*MM(O)
= 2*12.01 + 4*1.008 + 2*16.0
= 60.052 g/mol
use:
mass of CH3COOH,
m = number of mol * molar mass
= 0.8846 mol * 60.05 g/mol
= 53.12 g
volume of solution = 1 L = 1000 mL
density of solution = 1.00 g/mL
Use:
mass of solution = density * volume
= 1.00 g/mL * 1000 mL
= 1000 g
Now use:
mass % of acetic acid = mass of acetic acid * 100 / mass of solution
= 53.12 * 100 / 1000
= 5.312 %
≅ 5.3%
Answer: See below
Explanation:
1. a) 0.15 moles calcium carbonate (15g/100g/mole)
b) 0.15 moles CaO (molar ratio of CaO to CaCO3 is 1:1)
c) 8.4 grams CaO (0.15 moles)*(56 grams/mole)
2. a) 0.274 moles Na2O (17g/62 grams/mole)
b) 46.6 grams NaNO3 (2 moles NaNO3/1 mole Na2O)*(0.274 moles Na2O)*(85 g/mole NaNO3)