N = M x V
n = 2.5 x 5.0
n = 12.5 moles of C6H12O6
<h3>
Answer:</h3>
B) 4H₂(g) + O₂(g) ⟶ 2H₂O(l)
<h3>
Explanation:</h3>
- Chemical reactions occur when compounds or elements combine to form new compounds or other elements.
- Chemical reactions may be classified into various types which include synthesis reactions, replacement reaction, decomposition reactions, and precipitation reactions among others.
- In our case, we were supposed to identify a synthesis reaction.
- Thus, we need to know what is a synthesis reaction.
- A synthesis reaction is a reaction that occurs when two elements or small compounds combine to generate a large compound.
- In this case, B is the choice that shows a synthesis reaction where hydrogen gas combines with oxygen gas to yield water.
Answer:
4 1/2
Explanation:
Use a ratio to find your answer
4 6
----- = -------
3 x
Cross multiply to solve for x.
4x = 18
x = 18/4
x = 4 2/4 which is the same as 4 1/2
Answer:
Temperature of the water
Explanation:
In every study, there must be independent and dependent variables. An independent variable is the variable that is changed in order to obtain a response. In this case, the temperature of the water is being changed, the response in this experiment is the respiration rate of the goldfish.
Thus the respiration rate of the goldfish is the dependent variable because it is controlled by the temperature of the water and changes accordingly.
Summarily, the independent variable is the temperature of the water while the dependent variable is the respiration rate of the goldfish.
Answer:
1.73 M
Explanation:
We must first obtain the concentration of the concentrated acid from the formula;
Co= 10pd/M
Where
Co= concentration of concentrated acid = (the unknown)
p= percentage concentration of concentrated acid= 37.3%
d= density of concentrated acid = 1.19 g/ml
M= Molar mass of the anhydrous acid
Molar mass of anhydrous HCl= 1 +35.5= 36.5 gmol-1
Substituting values;
Co= 10 × 37.3 × 1.19/36.5
Co= 443.87/36.6
Co= 12.16 M
We can now use the dilution formula
CoVo= CdVd
Where;
Co= concentration of concentrated acid= 12.16 M
Vo= volume of concentrated acid = 35.5 ml
Cd= concentration of dilute acid =(the unknown)
Vd= volume of dilute acid = 250ml
Substituting values and making Cd the subject of the formula;
Cd= CoVo/Vd
Cd= 12.16 × 35.5/250
Cd= 1.73 M