The easiest, non-technical way to think about it is like this:
-- A scalar is a quantity that has a size but no direction.
Those include temperature, speed, cost, volume, distance, etc.
One number is all there is to know about it, and there's no way you can
add more of the same stuff to it that would cancel both of them out.
-- A vector is a quantity that has a size and also has a direction.
Those include force, displacement, velocity, acceleration, etc.
It takes more than one number to completely describe one of these.
Also, if you combine two of the same vector quantity in different ways,
you can get different results, and they can even cancel each other out.
Here are some examples. Notice that in each of these examples,
every speed has a direction that goes along with it. This turns the
scalar speed into a vector velocity.
If you're walking inside a bus, and the bus is driving along the road,
then your velocity along the road is the sum of your walking velocity
inside the bus plus the velocity of the bus along the road.
-- If you're walking north up the middle of the bus at 2 miles per hour
and the bus is driving north along the road at 20 miles per hour, then
your velocity along the road is 22 miles per hour north.
-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is driving north along the road at 5 miles per hour, then your
velocity along the road is 3 miles per hour north.
-- If you're walking south towards the back of the bus at 2 miles per hour
and the bus is just barely rolling north along the road at 2 miles per hour,
then your velocity along the road is zero.
-- If you're in a big railroad flat-car that's rolling north along the track
at 2 miles per hour, and you walk across the flat-car towards the east
at 2 miles per hour, then your velocity along the ground is 2.818 miles
per hour toward the northeast.
Answer:

Explanation:
information we know:
Total force: 
Weight: 
distance: 
vertical component of the force: 
-------------
In this case we need the formulas to calculate the components of the force (because to calculate the work we need the horizontal component of the force).
horizontal component: 
vertical component: 
but from the given information we know that 
so, equation these two
and 

and we know the force
, thus:

now we clear for 

the angle to the horizontal is 15.466°, with this information we can calculate the horizontal component of the force:


whith this horizontal component we calculate the work to move the crate a distance of 4 m:

the work done is W=173.48J
Renewable energy
<u>Advantages :-</u>
1. Easily regenerate
2. Boost economic growth
3. Easily available
4. Support environment
5. Low maintenance cost
<u>Disadvantages :-</u>
1. Weather dependency
2. High installation cost
3. Noise caused by wind energy
4. Fluctuation problem (solar)
5. Intermittency issue (wind)
Non-renewable energy
<u>Advantages :-</u>
1. Concentrated energy source
2. Reliable energy source
3. Can be built anywhere
4. No radioactive waste
<u>Disadvantages :-</u>
1. Produces greenhouse gases
2. Contributes to global warming
3. Produces acid rain
4. Harmful to environment when they are burnt
<em>I hope this helps.....</em>
<span>Taking into account the information above, we know the average mass of the bucket of water may be m=20-5/2=17.5kg. As the bucket of water is pulled at a "constant velocity" the work required to raise the bucket to the platform transformed into the potential energy of the bucket of water. That is why it should be W=mgh=17.5*9.8*40=6860J</span>