Answer:0.1759 v
Explanation:
Intensity of wave at receiver end is
I=
I=
I=
Amplitude of electric field at receiver end

Amplitude of induced emf
=
=
=
Answer:
Explanation:
A ) When gymnast is motionless , he is in equilibrium
T = mg
= 63 x 9.81
= 618.03 N
B )
When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.
T = mg
= 618.03 N
C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2
Net force on it = T - mg , acting in upward direction
T - mg = m a
T = mg + m a
= m ( g + a )
= 63 ( 9.81 + .6)
= 655.83 N
D ) If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2
Net force acting in downward direction
mg - T = ma
T = m ( g - a )
= 63 x ( 9.81 - .6 )
= 580.23 N
Answer:
xaubUajnaai ajn AJ au aun a
Explanation:
ahayba uabah an aj
Answer:
bhi jo bhi of gp oh oh gi IG 7u to uff do if goo td to yd do FP ae rt 7g hi pic vo icon
Explanation:
bh hi h bhi vc di oh x At jb jo iv hp of di of dr hi o hc x gh ki vc hi jo
Answer:
Total length of spring 0.647 m
Explanation:
We have given mass of the person m = 150 kg
Acceleration due to gravity 
Spring constant k = 10000 N/m
Nominal length of spring = 0.50
According to hook's law


x = 0.147 m
So total length of spring = 0.50+0.147 = 0.647 m