Answer:
262 kN/C
Explanation:
If the electrons is moving parallel, thus it has a retiline movement, and because the velocity is varing, it's a retiline variated movement. Thus, the acceleration can be calculated by:
v² = v0² + 2aΔS
Where v0 is the initial velocity (2.0x10⁷ m/s), v is the final velocity (4.0x10⁷ m/s), and ΔS is the distance (1.3 cm = 0.013 m), so:
(4.0x10⁷)² = (2.0x10⁷)² + 2*a*0.013
16x10¹⁴ = 4x10¹⁴ + 0.026a
0.026a = 12x10¹⁴
a = 4.61x10¹⁶ m/s²
The electric force due to the electric field (E) is:
F = Eq
Where q is the charge of the electron (-1.602x10⁻¹⁹C). By Newton's second law:
F = m*a
Where m is the mass, so:
E*q = m*a
The mass of one electrons is 9.1x10⁻³¹ kg, thus, the module of electric field strenght (without the minus signal of the electron charge) is:
E*(1.602x10⁻¹⁹) = 9.1x10⁻³¹ * 4.61x10¹⁶
E = 261,866.42 N/C
E = 262 kN/C
Answer:
<u>We are given:</u>
displacement (s) = 130 m
acceleration (a) = -5 m/s²
final velocity (v) = 0 m/s [the cars 'stops' in 130 m]
initial velocity (u) = u m/s
<u>Solving for initial velocity:</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(0)² - (u)² = 2(-5)(130)
-u² = -1300
u² = 1300
u = √1300
u = 36 m/s
Answer:

Explanation:
given,
velocity of particle 1 = 0.741 c to left
velocity of second particle = 0.543 c to right
relative velocity between the particle = ?
for the relative velocity calculation we have formula

u_x = 0.543 c
v_x = - 0.741 c




Relative velocity of the particle is 
Answers:(a) 
μT
(b) 
μm
(c) f =
Explanation:Given electric field(in y direction) equation:

(a) The amplitude of electric field is

. Hence
The amplitude of magnetic field oscillations is

Where c = speed of light
Therefore,

μT (Where T is in seconds--signifies the oscillations)
(b) To find the wavelength use:



μm
(c) Since c = fλ
=> f = c/λ
Now plug-in the values
f = (3*10^8)/(0.4488*10^-6)
f =
Answer:
A) how your body uses oxygen