Answer:
Part a)
P = 13.93 kW
Part b)
R = 8357.6 Cents
Explanation:
Part A)
heat required to melt the aluminium is given by

here we have



Since this is the amount of aluminium per hour
so power required to melt is given by



Since the efficiency is 85% so actual power required will be

Part B)
Total energy consumed by the furnace for 30 hours



now the total cost of energy consumption is given as



In order to delete a file, it is required to first select the file which you want to delete and then select 'delete' from the file menu. It will then ask you to confirm the deletion which will be required in order to complete the file deletion process.
It isn't required to click on the X at the top right of the screen or to open the file you want to delete as these steps aren't relevant to the deletion process.
Hence, the statements which describe the steps you need to take in order to delete a file are as follows:
- Confirm the deletion.
- Select Delete from the File menu.
- Select the file you want to delete.
Answer:
Earth attract the Moon with a force that is greater.
Explanation:
According to the law of gravitation, the gravitational force between two masses is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.
Mathematically, F1 = Gm1m2/r²... 1
Let m1 be the mass of the earth and m2 be that of the moon
If the Earth is much more massive than is the Moon, the new force of attraction between them will become;
F2= G(2m1)m2/r²
F2 = 2Gm1m2/r² ... (2)
Dividing eqn 1 by 2 we have;
F1/F2 = (Gm1m2/r²)÷(2Gm1m2/r²)
F1/F2 = Gm1m2/r²×r²/2Gm1m2
F1/F2 = 1/2
F2=2F1
This shows that that the earth will attract the moon by a force 2times the initial force of the masses(i.e a much greater force)
Answer:
The fundamental wavelength of the vibrating string is 1.7 m.
Explanation:
We have,
Velocity of wave on a guitar string is 344 m/s
Length of the guitar string is 85 cm or 0.85 m
It is required to find the fundamental wavelength of the vibrating string. The fundamental frequency on the string is given by :

Now fundamental wavelength is :

So, the fundamental wavelength of the vibrating string is 1.7 m.
The wavelength decreases to roughly half.
(The frequency roughly doubles.)