Answer:
The maximum height attained by the object and the number of seconds are 128 ft and 4 sec.
Explanation:
Given that,
Initial velocity u= 128 ft/sec
Equation of height
....(I)
(a). We need to calculate the maximum height
Firstly we need to calculate the time

From equation (I)




Now, for maximum height
Put the value of t in equation (I)


(b). The number of seconds it takes the object to hit the ground.
We know that, when the object reaches ground the height becomes zero




Hence, The maximum height attained by the object and the number of seconds are 128 ft and 4 sec.
Answer:
Electrons
Explanation:
Electrons are negatively charged sub-atomic particles, therefore when a body's negatively charged, it means that there's more electrons than protons.
Answer:
5 minutes sweetheart
Explanation:
thank me later-also give me brainless if you want too when you get the answer correct!
To solve this problem it is necessary to use the concepts related to the Hall Effect and Drift velocity, that is, at the speed that an electron reaches due to a magnetic field.
The drift velocity is given by the equation:

Where
I = current
n = Number of free electrons
A = Cross-Section Area
q = charge of proton
Our values are given by,






The hall voltage is given by

Where
B= Magnetic field
n = number of free electrons
d = distance
e = charge of electron
Then using the formula and replacing,


A) According to the nebular theory, the Solar System formed from a huge gaseous nebula which at a certain point was perturbated. Atoms and molecules started colliding, forming planetesimals (a sort of big rocks). The planetesimals were attracted to each other by gravity, forming bigger warm almost spherical objects called protoplanets, which at the end cooled down forming planets.
Therefore the correct answer is "all of the above".
b) The planets closer to the Sun were (and still are) subject to higher temperatures, due to their close distance to the Sun. In these conditions, rocky materials undergo condensation, while iced gaseous materials undergo vaporization. In the outer parts of the Solar System temperatures are too low to allow these transformations.
The correct answer is again "all of the above".