1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firdavs [7]
4 years ago
14

in this model, the velocity of the spacecraft at position 2 is A.) equal to B.) greater than C.) less than the velocity of the c

raft at position 4. At position 1, the direction of the spacecraft changes because of A.) the gravitational force between earth and the spacecraft B.) the momentum of the spacecraft C.) secondary fuel tanks. Position 3 represents the A.) final destination of the spacecraft B.) gravitational force of the spacecraft on Earth C.) orbital path or velocity of Earth

Physics
2 answers:
slava [35]4 years ago
8 0

Answer:

1. Right answer: the velocity of the spacecraft at position 2 is greater than the velocity of the craft at position 4.

This is due the gravity field of the planet (The Earth in this case) is used to accelerate the craft. This is true when in a specific point the direction of the movement of the craft is the same direction of the movement of the planet.

In this case the craft will be “catched” by the Earth’s gravitational field, making the craft  to enter a circular orbit.

2. Right answer: At position 1, the direction of the spacecraft changes because of the gravitational force between Earth and the spacecraft.

As explained in the prior answer, this is the exact and correct point where the trajectory of the spacecraft enters into a circular orbit because of the attraction due gravity of the Earth and therefore changes its direction.

3. Right answer: Position 3 represents the orbital path or velocity of Earth

Being this the orbital path of the Earth and considering the trajectory of the craft, the condition of accelerating the craft is accomplished.

If the orbital path of the Earth were the opposite from the shown in the figure, the effect on the craft would be braking.

Note all of these is related to the gravitational assistance.

Gravitational assistance is the maneuver in which the energy of the gravitational field of a planet or satellite is used to obtain an acceleration or braking of the probe changing its trajectory.

This maneuver is also called slingshot effect, swing-by or gravity assist. It is a common technique in space for the outer Solar System missions , in order to save costs in the launch rocket and thrusters.

finlep [7]4 years ago
6 0
<h2>1. Right answer: the velocity of the spacecraft at position 2 is <u>greater than</u> the velocity of the craft at position 4. </h2>

This is due the gravity field of the planet (The Earth in this case) is used to accelerate the craft. This is true when in a specific point the direction of the movement of the craft is the same direction of the movement of the planet.

In this case the craft will be “catched” by the Earth’s gravitational field, making the craft  to enter a circular orbit.

<h2>2. Right answer: At position 1, the direction of the spacecraft changes because of <u>the gravitational force between Earth and the spacecraft. </u></h2>

As explained in the prior answer, this is the exact and correct point where the trajectory of the spacecraft enters into a circular orbit because of the attraction due gravity of the Earth and therefore changes its direction.


<h2>3. Right answer: Position 3 represents <u>the orbital path or velocity of Earth </u></h2>

Being this the orbital path of the Earth and considering the trajectory of the craft, the condition of accelerating the craft is accomplished.

If the orbital path of the Earth were the opposite from the shown in the figure, the effect on the craft would be braking.

Note all of these is related to the <u>gravitational assistance. </u>

<u>Gravitational assistance</u> is the maneuver in which the energy of the gravitational field of a planet or satellite is used to obtain an acceleration or braking of the probe changing its trajectory.

This maneuver is also called <em>slingshot effect, swing-by</em> or <em>gravity assist</em>. It is a common technique in space for the outer Solar System missions , in order to save costs in the launch rocket and thrusters.


You might be interested in
The heating of groundwater forms
KIM [24]
The appropriate answer is c. geysers. A geysers a hot water fountain that spouts intermittently with great force, frequently accompanied by a thunderous roar. The world famous Old Faithful is located in Yellowstone National Park. This geyser erupts every 65 min sending a jet of water almost 60 meters into the air. Sinkholes and caves are formed by the action of groundwater on carbonate rocks which causes them to colapse and former these structures.
6 0
3 years ago
Read 2 more answers
Which of the following is NOT true about sweat? Sweat helps cool the body. Sweat glands are located all over the body. Sweat hel
erma4kov [3.2K]
The answer is c!!!!!!!!!!!!!!!

8 0
4 years ago
Read 2 more answers
Food chains are made up of many_____________. HELP ASAP!!!!!
Mashcka [7]
Hello!

Possible answer could be Organisms

There are a lot of Organisms in the overall food chain.

Hope this helped!
4 0
3 years ago
Read 2 more answers
A moving object has a kinetic energy of 150J. what is the mass of the object if its momentum is 25kgm/s
Umnica [9.8K]

Answer:

A

hooopppee itt heeelppss

8 0
3 years ago
What is the orbital period of a spacecraft in a low orbit near the surface of mars? The radius of mars is 3.4×106m.
valkas [14]
<h2>Answer: 56.718 min</h2>

Explanation:

According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”. </em>

In other words, this law states a relation between the orbital period T of a body (moon, planet, satellite) orbiting a greater body in space with the size a of its orbit.

This Law is originally expressed as follows:

T^{2}=\frac{4\pi^{2}}{GM}a^{3}   (1)

Where;

G is the Gravitational Constant and its value is 6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}

M=6.39(10)^{23}kg is the mass of Mars

a=3.4(10)^{6}m  is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)

If we want to find the period, we have to express equation (1) as written below and substitute all the values:

T=\sqrt{\frac{4\pi^{2}}{GM}a^{3}}    (2)

T=\sqrt{\frac{4\pi^{2}}{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(6.39(10)^{23}kg)}(3.4(10)^{6}m)^{3}}    (3)

T=\sqrt{11581157.44 s^{2}}    (4)

Finally:

T=3403.1099s=56.718min    This is the orbital period of a spacecraft in a low orbit near the surface of mars

6 0
3 years ago
Other questions:
  • A small wooden block with mass 0.750 kg is suspended from the lower end of a light cord that is 1.72 m long. The block is initia
    12·1 answer
  • Consider a particle with initial velocity v⃗ that has magnitude 12.0 m/s and is directed 60.0 degrees above the negative x axis.
    5·1 answer
  • A point charge Q is located a short distance from a point charge 3Q, and no other charges are present. If the electrical force o
    5·1 answer
  • If 2 different solids have the same masses but different volumes, how will their densities compare?
    9·2 answers
  • A rubber ball thrown at a speed of 5 m/s hit a flat wall and
    14·1 answer
  • An object moves with a positive acceleration. Could the object be moving with increasing speed, decreasing speed or constant spe
    13·1 answer
  • 1 point<br> How much force is needed to accelerate an 84-kg boulder at a rate of 6.4<br> m/s/s? *
    12·1 answer
  • What is the chemical formula for magnesium sulfide?
    12·1 answer
  • a student standing between two walls shouts once.he hears the first echo after 3 seconds and the next after 5 seconds. calculate
    13·1 answer
  • What is the weight of a 63.7 kg person? ?N
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!