1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Klio2033 [76]
3 years ago
14

A bead slides without friction around a loop the-loop. The bead is released from a height of 17.6 m from the bottom of the loop-

the loop which has a radius 5 m. The acceleration of gravity is 9.8 m/s^2.
Required:
How large is the normal force on it if its mass is 5g?
Physics
1 answer:
solong [7]3 years ago
3 0

Answer:

 N₁ = 393.96 N   and  N = 197.96 N

Explanation:

In This exercise we must use Newton's second law to find the normal force. Let's use two points the lowest and the highest of the loop

Lowest point, we write Newton's second law n for the y-axis

          N -W = m a

where the acceleration is ccentripeta

          a = v² / r

           

          N = W + m v² / r

          N = mg + mv² / r

         

we can use energy to find the speed at the bottom of the circle

starting point. Highest point where the ball is released

           Em₀ = U = m g h

lowest point. Stop curl down

           Em_{f} = K = ½ m v²

           Emo = Em_{f}

           m g h = ½ m v²

           v² = 2 gh

we substitute

             N = m (g + 2gh / r)

            N = mg (1 + 2h / r)

let's calculate

          N₁ = 5 9.8 (1 + 2 17.6 / 5)

          N₁ = 393.96 N

headed up

we repeat the calculation in the longest part of the loop

          -N -W = - m v₂² / r

            N = m v₂² / r - W

             N = m (v₂²/r  - g)

we seek speed with the conservation of energy

           Em₀ = U = m g h

final point. Top of circle with height 2r

             Em_{f} = K + U = ½ m v₂² + mg (2r)

              Em₀ =   Em_{f}

            mgh = ½ m v₂² + 2mgr

             v₂² = 2 g (h-2r)

we substitute

            N = m (2g (h-2r) / r - g)

            N = mg (2 (h-r) / r 1) = mg (2h/r  -2 -1)

             N = mg (2h/r  - 3)

            N = 5 9.8 (2 17.6 / 5 -3)

            N = 197.96 N

Directed down

You might be interested in
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 75
katen-ka-za [31]

Answer:

Part A) 3899 kPa  

Part B) 392.33 kJ/kg  

Part C) 0.523

Part D) 495 kPa

Explanation:

Part A

First from the temperature at state 1 the relative specific volume and the internal energy at that state are determined from:

u_{1} = 214.07 kJ/kg  

\alphar_{1} = 621.2  

The relative specific volume at state 2 is obtained from the compression ratio:  

\alphar_{2} = \frac{\alpha r_{1}  }{r}

     =621.2/ 8

    = 77.65  

From this the temperature and internal energy at state 2 can be determined using interpolation with data from A-17(table):  

T_{2} = 673 K

u_{2} = 491.2 kJ/kg  

The pressure at state 2 can be determined by manipulating the ideal gas relations at state 1 and 2:  

P_{2} =  P_{1} r\frac{T_{2} }{T_{1} }

       = 95*8*673/300

      = 1705 kPa  

Now from the energy balance for stage 2-3 the internal energy at state 3 can be obtained:  

deltau_{2-3} =q_{in}\\ u_{3} -u_{2} =q_{in}\\u_{3}=u_{2}+q_{in}

     = 1241.2 kJ/kg

From this the temperature and relative specific volume at state 3 can be determined by interpolation with data from A-17(table):  

T_{3} = 1539 K  

\alpha r_{3} = 6.588  

The pressure at state 3 can be obtained by manipulating the ideal gas relations for state 2 and 3:  

P_{3} =P_{2} \frac{T_{3} }{T_{2} }

     = 3899 kPa  

<u>Part B</u>

The relative specific volume at state 4 is obtained from the compression ratio:  

\alpha r_{4}= r\alpha r_{3}

      = 52.7

From this the temperature and internal energy at state 4 can be determined by interpolation with data from A-17:  

T_{4}=775 K

u_{4}= 571.74 kJ/kg  

The net work output is the difference of the heat input and heat rejection where the heat rejection is determined from the decrease in internal energy in stage 4-1:  

w=q_{in}-q_{out}\\q_{in}-(u_{4} -u_{1} )\\=392.33 kJ/kg

<u>Part C  </u>

The thermal efficiency is obtained from the work and the heat input:  

η=\frac{w}{q_{in} }

=0.523

<u>Part D  </u>

The mean effective pressure is determined from its standard relation:  

MEP=\frac{w}{\alpha_{1}- \alpha_{2} }

      =\frac{w}{\alpha_{1}(1- \frac{1}{r}  }

      =\frac{rwP_{1} }{RT_{1} (r-1) }

      =495 kPa

8 0
4 years ago
Has the United States always been a country with many formal organizations
elena-14-01-66 [18.8K]
Yes because of mostly the technology
6 0
2 years ago
Read 2 more answers
A baseball is thrown with an initial velocity of 45.4 m/s at an angle of 31.2 ∘ .
sveticcg [70]

Answer:

V (initial vertical velocity) = 45.4 sin 31.2 = 23.52 m/s

1/2 m V^2 = m g h      conservation of energy

h = V^2 / (2 g) = 23.52^2 / 19.6 = 28.2 m       max height

Check:

t = 28.2 / 9.8 = 2.88 sec    time to reach max height

h = 23.52 * 2.88 - 1/2 g 2.88^2 = 27.1 m

8 0
2 years ago
A 250 kg flatcar 25 m long is moving with a speed of 3.0 m/s along horizontal frictionless rails. A 61 kg worker starts walking
Anna11 [10]

Answer:

x=31.09m

Explanation:

p1=p2

The momentum of flatcar and the momentum of the worker so

The velocity of the worker is:

m_{f}*v_{f}=m_{w}*v_{w}\\\\v_{f}=\frac{m_{f}*v_{f}}{m_{w}}\\v_{f}=\frac{61kg*3.0\frac{m}{s}}{250kg}\\v_{f}=0.732\frac{m}{s}

The total motion has a total velocity and is

Vt=v_{w}+v_{f}\\Vt=0.732\frac{m}{s}+3.0\frac{m}{s}\\Vt=3.732\frac{m}{s}

The time the worker take walking is

t=\frac{x}{v_{w}}\\t=\frac{25m}{3\frac{m}{s}}=8.33s

Now the total time and the total velocity determinate the motion of tha flatcar how far has moved

x=t*Vt\\x=8.33s*3.732\frac{m}{s} \\x=31.09m

5 0
3 years ago
Would you expect to weigh more on an ocean beach or on top of a mountain? Explain.
frosja888 [35]

Answer:

An Ocean beach

Explanation:

a Ocean beach is far heavier than the top of a mountain, despite that a mountain is made with many heavy rocks a Ocean beach may have light sand but the layers of sand and the width would be way heavier then the top of a mountain.

7 0
3 years ago
Other questions:
  • At the 1 s mark, which objects have equal momentum?
    14·1 answer
  • Which labels, if placed from left to right, best complete the timeline? Z, X, Y
    8·2 answers
  • Visible light with a wavelength of 480 nm appears as what color?
    10·1 answer
  • Question 4
    10·1 answer
  • What is the answer to do when your car has no battery.
    11·1 answer
  • How do polarizing sunglasses reduce the glare from the road? Explain.
    7·1 answer
  • In circuit A, two resistors R1 and R2 are connected in series. In circuit B, two identical resistors are connected in parallel.
    10·1 answer
  • What dose nuclear reactions produce?
    6·1 answer
  • Essential Question: Where does energy come from and where does it go? How is energy transferred and converted?
    5·1 answer
  • What does the slope of a position-time graph measure?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!