Answer:
648.68 mg
Explanation:
The reaction that takes place is:
- FeCl₃ + 3NaOH → Fe(OH)₃ + 3NaCl
First we<u> calculate how many moles of each reactant were added</u>, using the <em>given volumes and concentrations</em>:
- FeCl₃ ⇒ 100 mL * 0.240 M = 24 mmol FeCl₃
- NaOH ⇒ 100 mL * 0.182 M = 18.2 mmol NaOH
24 mmol of FeCl₃ would react completely with (24 * 3) 72 mmol of NaOH. There are not as many NaOH mmoles, so NaOH is the limiting reactant.
Now we <u>calculate how many moles of Fe(OH)₃ are formed</u>, using the <em>moles of the limiting reactant</em>:
- 18.2 mmol NaOH *
= 6.07 mmol Fe(OH)₃
Finally we <u>convert 6.07 mmol Fe(OH)₃ to grams</u>, using its<em> molar mass</em>:
- 6.07 mmol Fe(OH)₃ * 106.867 mg/mmol = 648.68 mg
The atom is the smallest particle of an element that retains it's characteristics. Sub-atomic particles such as protons, neutrons and electrons form the atom and it is the amount of each of these sub-atomic particles that make the element that element.
You’re adding all the atoms together. So for C18H36O2, you would add 18+36+2 to get your product. If there isn’t a number by the element, that means there’s only one atom.
That is the volume of the nitrogen atom
Answer:
Concentration of product at equilibrium ;
![[H^+]=0.0000229 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.0000229%20M)
![[CN^-]=0.0000229 M](https://tex.z-dn.net/?f=%5BCN%5E-%5D%3D0.0000229%20M)
Explanation:

initially
0.85 M 0 0
(0.85-x)M x x
The equilibrium constant of reaction = 
The expression of an equilibrium cannot can be written as:
![K_c=\frac{[H^+][CN^-]}{[HCN]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH%5E%2B%5D%5BCN%5E-%5D%7D%7B%5BHCN%5D%7D)

Solving for x:
x = 0.0000229
Concentration of product at equilibrium ;
![[H^+]=0.0000229 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.0000229%20M)
![[CN^-]=0.0000229 M](https://tex.z-dn.net/?f=%5BCN%5E-%5D%3D0.0000229%20M)