It is formed when a metal element is chemically combined to a nonmetal. The metal element will form a positive ion and the nonmetal will form a negative ion. They will then combined to form a very strong bond with very strong electrostatic forces between the particles.
First row: HCl, ZnCl2, FeCl3, AlCl3, BaCl2, PbCl4
Second row: H3P, Zn3P2, FeP, AlP, Ba3P2, Pb3P4
Third row: HNO3, Zn(NO3)2, Fe(NO3)3, Al(NO3)3, Ba(NO3)2, Pb(NO3)4
Fourth row: ZnO, Fe2O3, Al2O3, BaO, PbO2
Fifth row: HCaF2, Zn(CaF2)2, Fe(CaF2)3, Al(CaF2)3, Ba(CaF2)2, Pb(CaF2)4
Sixth row: H2SO4, ZnSO4, Fe2(SO4)3, Al2(SO4)3, BaSO4, Pb(SO4)2
Answer:
8.34
Explanation:
1) how much moles of NH₃ are in the reaction;
2) how much moles of H₂ are in the reaction;
3) the required mass of the H₂.
all the details are in the attachment; the answer is marked with red colour.
Note1: M(NH₃) - molar mass of the NH₃, constant; M(H₂) - the molar mass of the H₂, constant; ν(NH₃) - quantity of NH₃; ν(H₂) - quantity of H₂.
Note2: the suggested solution is not the shortest one.
Two radius of an atom is equal to the diameter. Adding up all the diameter of the atoms, it should be equal to 9.5 mm. Therefore, we simply convert the units to the same units then divide 1.35 A to 9.5 mm. We calculate as follows:
no. of atoms = 0.0095 m / 1.35x10^-9 m = 7037037 atoms
Hope this answers the question. Have a nice day.