Answer:

Explanation:
Given that,
Initial angular velocity, 
Acceleration of the wheel, 
Rotation, 
Let t is the time. Using second equation of kinematics can be calculated using time.

Let
is the final angular velocity and a is the radial component of acceleration.

Radial component of acceleration,

So, the required acceleration on the edge of the wheel is
.
The angle of incidence for a ray of light passing through the center of curvature of a concave mirror is 0°.
The angle of incidence is the angle between the surface's normal and the incident ray. For a concave mirror, the normal of the surface is along the center of the curvature, and a ray of light passed through a center of curvature passes through the normal of the surface.
The ray of light retreats its path making a zero angle of reflection. The law of reflection state that the angle of incidence is equal to the angle of reflection; therefore, the angle of incidence of a concave surface passed through the center of curvature is zero degrees.
Learn more about the angle of incidence here:
brainly.com/question/3432273
#SPJ4
Answer:
331.75 V
Explanation:
Given:
Number of turns of the coil, N = 40 turns
Area, A = 0.06 m²
Magnetic Field, B = 0.4 T
Frequency, f = 55 Hz
Maximum induce emf, E₀ = NABω
but ω = 2πf
Maximum induce emf, E₀ = NAB(2πf₀)
Maximum induce emf, E₀ = 2πNABf₀
Where;
N is number of turns of the coil
A is area
B is magnetic field
ω is the angular velocity
f is the frequency
E₀ = 2 × π × 40 × 0.06 × 0.4 × 55
E₀ = 342.81 V
The maximum induced emf is 331.75 V
Answer:
There must be an equal amount of each element on both sides of the equation. Hope this helps and please marks as the brainliest.
Explanation:
Answer: V = 15 m/s
Explanation:
As stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. The observed frequency the car will be experiencing will be addition of the two frequency. That is,
F = 2.1 × 10^10 + 1030 = 2.100000103×10^10Hz
Using doppler effect formula
F = C/ ( C - V) × f
Where
F = observed frequency
f = source frequency
C = speed of light = 3×10^8
V = speed of the car
Substitute all the parameters into the formula
2.100000103×10^10 = 3×10^8/(3×10^8 -V) × 2.1×10^10
2.100000103×10^10/2.1×10^10 = 3×108/(3×10^8 - V)
1.000000049 = 3×10^8/(3×10^8 - V)
Cross multiply
300000014.7 - 1.000000049V = 3×10^8
Collect the like terms
1.000000049V = 14.71429
Make V the subject of formula
V = 14.71429/1.000000049
V = 14.7 m/s
The speed of the car is 15 m/s approximately