Answer:
HF(aq)+NaOH(aq)→NaF(aq)+H2O(l)
Explanation:
Complete question
Dissolved hydrofluoric acid reacts with dissolved sodium hydroxide to form water and aqueous sodium fluoride. What is the net ionic equation
Equilibrium equation between the undissociated acid and the dissociated ions
HF(aq)⇌H+(aq)+F−(aq)
Sodium hydroxide will dissociate aqueous solution to produce sodium cations, Na+, and hydroxide anions, OH−
NaOH(aq)→Na+(aq)+OH−(aq)
Hydroxide anions and the hydrogen cations will neutralize each other to produce water.
H+(aq)+OH−(aq)→H2O(l)
On combining both the equation, we get –
HF(aq)+Na+(aq)+OH−(aq)→Na+(aq)+F−(aq)+H2O(l)
The Final equation is
HF(aq)+NaOH(aq)→NaF(aq)+H2O(l)
Answer:
1.25 M
Explanation:
Step 1: Given data
Mass of KI (solute): 20.68 g
Volume of the solution: 100 mL (0.100 L)
Step 2: Calculate the moles of solute
The molar mass of KI is 166.00 g/mol.
20.68 g × 1 mol/166.00 g = 0.1246 mol
Step 3: Calculate the molar concentration of KI
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.1246 mol/0.100 L= 1.25 M
The molar concentration of the original HF solution : 0.342 M
Further explanation
Given
31.2 ml of 0.200 M NaOH
18.2 ml of HF
Required
The molar concentration of HF
Solution
Titration formula
M₁V₁n₁=M₂V₂n₂
n=acid/base valence (amount of H⁺/OH⁻, for NaOH and HF n =1)
Titrant = NaOH(1)
Titrate = HF(2)
Input the value :