Conduction - touching hot pot
Convection - oven cycling warm air
Conduction - touching a warm coffee mug
Heat from a fire - radiation
Heat from the sun to solar panel - radiation
Warm water rising - convection
<u>Answer:</u> The isotopic symbol of barium is
and that of strontium is 
<u>Explanation:</u>
Nuclear fission reactions are defined as the reactions in which a heavier nuclei breaks down in two or more smaller nuclei.
In a nuclear reaction, the total mass and total atomic number remains the same.
- For the given fission reaction:

Total mass on reactant side = total mass on product side
235 + 1 = A + 94 + 3
A = 139
Total atomic number on reactant side = total atomic number on product side
92 + 0 = Z + 36 + 0
Z = 56
The isotopic symbol of barium is 
- For the given fission reaction:

Total mass on reactant side = total mass on product side
235 + 1 = A + 143 + 3
A = 90
Total atomic number on reactant side = total atomic number on product side
92 + 0 = Z + 54 + 0
Z = 38
The isotopic symbol of strontium is 
Hence, the isotopic symbol of barium is
and that of strontium is 
Answer:
b) 2.0 mol
Explanation:
Given data:
Number of moles of Ca needed = ?
Number of moles of water present = 4.0 mol
Solution:
Chemical equation:
Ca + 2H₂O → Ca(OH)₂ + H₂
now we will compare the moles of Ca and H₂O .
H₂O : Ca
2 : 1
4.0 : 1/2×4.0 = 2.0 mol
Thus, 2 moles of Ca are needed.