True.
A contact force is a force between two objects that are physically in contact with each other: an example of a contact force is the normal reaction of a table supporting a book.
A non-contact force is a force between two objects that are not physically in contact with each other: an example of non-contact force is the gravitational attraction between the Earth and the Moon.
Given:
Area of pool = 3m×4m
Diameter of orifice = 0.076m
Outlet Velocity = 6.3m/s
Accumulation velocity = 1.5cm/min
Required:
Inlet flowrate
Solution:
The problem can be solved by this general formula.
Accumulation = Inlet flowrate - Outlet flowrate
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice
First, we need to convert the units of the accumulation velocity into m/s to be consistent.
Accumulation velocity = 1.5cm/min × (1min/60s)×(1m/100cm)
Accumulation velocity = 0.00025 m/s
We then calculate the area of the pool and the area of the orifice by:
Area of pool = 3 × 4 m²
Area of pool = 12m²
Area of orifice = πd²/4 = π(0.076m)²/4
Area of orifice = 0.00454m²
Since we have all we need, we plug in the values to the general equation earlier
Accumulation velocity × Area of pool = Inlet flowrate - Outlet velocity × Area of orifice
0.00025 m/s × 12m² = Inlet flowrate - 6.3m/s × 0.00454m²
Transposing terms,
Inlet flowrate = 0.316 m³/s
Answer:
aw why? are you deleting the app for school?
Answer:
The current can't 'split down the parallel branch, because the diode is reverse biased so is blocking the flow of current. So basically it's acting as an open circuit. Also when the current flows it wouldn't reduce the currents amount flow through the resistor.
Explanation:
Btu/(lb-°F) J/(g-°C i mean this is the correct answer