Carbonation isn’t a force that causes such
(cm3) is a commonly used unit of volume that extends the derived SI-unit cubic metre, and corresponds to the volume of a cube that measures 1 cm × 1 cm × 1 cm.
so the answer is volume
Answer is: hydrogen bonding.
Methanol has stronger intermolecular bonds than methane.
Intermolecular forces are the forces between molecules or particles.
There are several types of intermolecular forces: hydrogen bonding, ion-induced dipole forces, ion-dipole forces andvan der Waals forces.
Hydrogen bond is an electrostatic attraction between two polar groups that occurs when a hydrogen atom (H), covalently bound to a highly electronegative atom such as flourine (F), oxygen (O) and nitrogen (N) atoms.
Answer : The mass of oxygen combined with 1.00 g of carbon in carbon dioxide will be, 2.66 grams.
Explanation :
Law of multiple proportion : It states that when two elements can combine to form two or more different compounds then the mass of one element compared to fixed mass of the other will always be in a ratio of small whole numbers.
As we are given that the mass of ratio of carbon and oxygen in CO is 1 gram and 1.33 gram.
Ratio of C and O in CO = 1 : 1
Ratio of C and O in CO₂ = 1 : 2
So, the mass of ratio of carbon and oxygen in CO₂ will be 1 gram and (2×1.33) 2.66 gram.
Thus, the mass of oxygen combined with 1.00 g of carbon in carbon dioxide will be, 2.66 grams.
Missing question: 0,535 gram of KIO₃ dissolved in 250 mL of de-ionized water to <span>make primary standard solution.
m(</span>KIO₃) = 0,535 g.
V(KIO₃) = 250 mL ÷ 1000 mL/L = 0,25 L.
n(KIO₃) = m(KIO₃) ÷ M(KIO₃).
n(KIO₃) = 0,535 g ÷ 214 g/mol.
n(KIO₃) = 0,0025 mol.
c(KIO₃) = n(KIO₃) ÷ V(KIO₃).
c(KIO₃) = 0,0025 mol ÷ 0,25 L.
c(KIO₃) = 0,01 mol/L = 0,01 M.