No answer is possible until we know the number that belongs after the words "... angular speed of ".
The density of the material would be 4.1 g/cm³.
Density is calculated by dividing the mass by the volume.
D=m÷v
D=45 g÷11 cm³
D=4.1 g/cm³
In the question, you just gave a complete and detailed
description of the plane's velocity vector:
4,000/16 meters/second , heading 35 degrees .
You might want to simplify the speed and make it a unit rate,
but otherwise, it's perfect.
250 meters/second, heading 35 degrees .
The weight of the meterstick is:

and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance

from the pivot.
The torque generated by the weight of the meterstick around the pivot is:

To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:

from which we find the value of d2:

So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
Because many fuels are fossil fuels they take millions of years to form and the known reserves are being used much faster than the new ones being made