Answer:
A) some of the rocks energy is transformed to thermal energy
Explanation:
If we neglect air resistance during the fall of the rock, than the mechanical energy of the rock (which is sum of its potential energy and its kinetic energy) would be constant during the entire motion, so the total energy of the rock at the top would be the same as the sum of its potential energy and kinetic energy at the bottom.
However, this not occurs, due to the presence of air resistance. In fact, air resistance acts against the fall of the rock, and because of the friction between the molecules of air and the surface of the rock, the rock loses part of its energy. This energy is converted into thermal energy of the molecules of the air.
<span>A gymnast with mass m1 = 43 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 115 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam.
1)What is the force the left support exerts on the beam?
2)What is the force the right support exerts on the beam?
3)How much extra mass could the gymnast hold before the beam begins to tip?
Now the gymnast (not holding any additional mass) walks directly above the right support.
4)What is the force the left support exerts on the beam?
5)What is the force the right support exerts on the beam?</span>
Answer:
6.88 mA
Explanation:
Given:
Resistance, R = 594 Ω
Capacitance = 1.3 μF
emf, V = 6.53 V
Time, t = 1 time constant
Now,
The initial current, I₀ = 
or
I₀ = 
or
I₀ = 0.0109 A
also,
I = ![I_0[1-e^{-\frac{t}{\tau}}]](https://tex.z-dn.net/?f=I_0%5B1-e%5E%7B-%5Cfrac%7Bt%7D%7B%5Ctau%7D%7D%5D)
here,
τ = time constant
e = 2.717
on substituting the respective values, we get
I = ![0.0109[1-e^{-\frac{\tau}{\tau}}]](https://tex.z-dn.net/?f=0.0109%5B1-e%5E%7B-%5Cfrac%7B%5Ctau%7D%7B%5Ctau%7D%7D%5D)
or
I =
or
I = 0.00688 A
or
I = 6.88 mA
Answer:
8 units
Explanation:
F=(k*q1*q2)/(r^2)
K is a constant, q1 is charge of 1, q2 is charge of 2, r is distance between the two.
Parfocal is the term used to describe a microscope that maintains focus when the objective lenses are replaced.
<h3>
What is the name of the objective lens ?</h3>
For observing minute features within a specimen sample, a high-powered objective lens, often known as a "high dry" lens, is perfect. You can see a very detailed image of the specimen on your slide thanks to the 400x total magnification that a high-power objective lens and a 10x eyepiece provide.
The four objective lenses on your microscope are for scanning (4x), low (10x), high (40x), and oil immersion (100x).
The first-stage lens used to create a picture from electrons leaving the specimen is referred to as the "objective lens." The objective lens is the most crucial component of the imaging system since the quality of the images is determined by how well it performs (resolution, contrast, etc.,).
To learn more than objective lens , visit
brainly.com/question/17307577
#SPJ4