Answer:
YES
Step-by-step explanation:
4(Z-3)=16
4Z-12=16
+12 +12
4Z=28
Z=7
Let <em>X</em> be the random variable representing the amount (in grams) of nicotine contained in a randomly chosen cigarette.
P(<em>X</em> ≤ 0.37) = P((<em>X</em> - 0.954)/0.292 ≤ (0.37 - 0.954)/0.292) = P(<em>Z</em> ≤ -2)
where <em>Z</em> follows the standard normal distribution with mean 0 and standard deviation 1. (We just transform <em>X</em> to <em>Z</em> using the rule <em>Z</em> = (<em>X</em> - mean(<em>X</em>))/sd(<em>X</em>).)
Given the required precision for this probability, you should consult a calculator or appropriate <em>z</em>-score table. You would find that
P(<em>Z</em> ≤ -2) ≈ 0.0228
You can also estimate this probabilty using the empirical or 68-95-99.7 rule, which says that approximately 95% of any normal distribution lies within 2 standard deviations of the mean. This is to say,
P(-2 ≤ <em>Z</em> ≤ 2) ≈ 0.95
which means
P(<em>Z</em> ≤ -2 or <em>Z</em> ≥ 2) ≈ 1 - 0.95 = 0.05
The normal distribution is symmetric, so this means
P(<em>Z</em> ≤ -2) ≈ 1/2 × 0.05 = 0.025
which is indeed pretty close to what we found earlier.
The answer is 2
See 1 +0 is 1 so 1+1=2
A.)
<span>s= 30m
u = ? ( initial velocity of the object )
a = 9.81 m/s^2 ( accn of free fall )
t = 1.5 s
s = ut + 1/2 at^2
\[u = \frac{ S - 1/2 a t^2 }{ t }\]
\[u = \frac{ 30 - ( 0.5 \times 9.81 \times 1.5^2) }{ 1.5 } \]
\[u = 12.6 m/s\]
</span>
b.)
<span>s = ut + 1/2 a t^2
u = 0 ,
s = 1/2 a t^2
\[s = \frac{ 1 }{ 2 } \times a \times t ^{2}\]
\[s = \frac{ 1 }{ 2 } \times 9.81 \times \left( \frac{ 12.6 }{ 9.81 } \right)^{2}\]
\[s = 8.0917...\]
\[therfore total distance = 8.0917 + 30 = 38.0917.. = 38.1 m \] </span>
Answer:
Length = 90 inch.
width = 30 inch
Let width of the rectangle = x inch.
So the length = 3x inch.
Perimeter = 2(length + width) = 2 (3x + x) = 8x.
So,
length = 3x = 3(30) = 90 inch.
width = x = 30 inch