Answer:
The equation of D = m/V
Where D = density
m = mass
and V = volume
We are solving for V, so with the manipulation of variables we multiply V on both sides giving us
V(D) = m
now we divide D on both sides giving us
V = m/D
We know our mass which is 600g and our density is 3.00 g/cm^3
so
V = 600g/3.00g/cm^3 = 200cm^3 or 200mL
a cubic centimeter (cm^3) is one of the units for volume. It's exactly like mL. 1 cm^3 = 1 mL
If you wish to change it to L, you'd have to convert
Explanation:
To prevent the crate from slipping, the maximum force that the belt can exert on the crate must be equal to the static friction force.
Ff = 0.5 * 16 * 9.8 = 78.4 N
a = 4.9 m/s^2
If acceleration of the belt exceeds the value determined in the previous question, what is the acceleration of the crate?
In this situation, the kinetic friction force is causing the crate to decelerate. So the net force on the crate is 78.4 N minus the kinetic friction force.
Ff = 0.28 * 16 * 9.8 = 43.904 N
Net force = 78.4 – 43.904 = 34.496 N
To determine the acceleration, divide by the mass of the crate.
a = 34.496 ÷ 16 = 2.156 m/s^2
These organelles are like the organs in a human and they help the cell stay alive. Each organelle has it's own specific function to help the cell survive. The nucleus of a eukaryotic cell directs the cell's activities and stores DNA. Eukaryotes also have a golgi apparatus that packages and distributes proteins.
The computation would be:moles = mass/ Molar Mass, but we are looking for the mass, so rearranging, will give us: mass = moles x MM
Q = moles x Hf
Q = (mass/MM) x Hf
mass = (Q x MM) / Hf
= (1.50-kJ x 18.0-g/mol) / 6.01-kJ/mol
=4.49 g H20 is the answer
Apply:
wavelength = speed of wave / frequency
wavelength = 12 m/s / 4 Hz = 48 m