The elephant and the mouse having zero weight in a gravity free space will not bump into you at the same effect.
<u>Explanation:
</u>
When both are in a gravity free space, the weights are zero, as we know that the


But when they will acquire the speed of same magnitude, say v, their different masses will acquire different momentum, which will make the difference in effect while bumping.

And as we know
Therefore, effect of impact by elephant will be more than that of mouse
. An elephant breaking into you will take you back faster than a mouse in space hits you.
Answer:
speed of the charge electric is v = - (Eo q/m) cos t
Explanation:
The electric charge has a very small mass so it follows the oscillations of the electric field. We force ourselves on the load,
F = q Eo sint
a) To find the velocity of the particle, let's use Newton's second law to find the acceleration and of this by integration the velocity
F = ma
q Eo sint = ma
a = Eo q / m sint
a = dv / dt
dv = adt
∫ dv = ∫ a dt
v-vo = I (Eoq / m) sin t dt
v- vo = Eo q / m (-cos t)
We evaluate the integral from the initial point, as the particle starts from rest Vo = 0, for t = 0
v = - (Eo q / m) cos t
b) Kinetic energy
K = ½ m v2
K = ½ m (Eoq / m)²2 (sint)²
K = ¹/₂ Eo² q² / m sin² t
c) The average kinetic energy over a period
K = ½ m v2
<v2> = (Eoq / m) 2 <cos2 t>
The average of cos2 t = ½, substitute and calculate
K = ½ m (Eoq / m)² ½
K = ¼ Eo² q² / m
Weight = (mass) x (gravity)
70 N = (mass) x (9.8 m/s²)
Divide each side by (9.8 m/s²) , and you have
mass = 70 N / 9.8 m/s² = 7.14 kg.
___________________________
Mass on the moon:
Mass doesn't change. It's a number that belongs to the bowling ball,
no matter where the ball goes. If the mass of the bowling ball is 7.14 kg
anywhere, then it's 7.14 kg everywhere ... on Earth, on the moon, on Mars, rolling around in the trunk of my car, or floating in intergalactic space.
However, WEIGHT depends on the gravity wherever the ball happens to be
at the moment.
The acceleration of gravity on the moon is 1.622 m/s².
So the WEIGHT of the ball on the moon is
(7.14 kg) x (1.622 m/s²) = 11.58 Newtons
That's only about 16% of its weight on Earth.
Answer:
The correct answer is option C , 0.72 N
Explanation:
Conductivity,<span>the degree to which a specified material conducts electricity, calculated as the ratio of the current density in the material to the electric field that causes the flow of current. It is the reciprocal of the resistivity.</span>