Explanation:
According to the given data, we will calculate the following.
Half life of lipase
= 8 min x 60 s/min
= 480 s
Rate constant for first order reaction is as follows.
=
Initial fat concentration
= 45
= 45 mmol/L
Rate of hydrolysis
= 0.07 mmol/L/s
Conversion X = 0.80
Final concentration (S) =
= 45 (1 - 0.80)
= 9
or, = 9 mmol/L
It is given that
= 5mmol/L
Therefore, time taken will be calculated as follows.
t = ![-\frac{1}{K_{d}}ln[1 - \frac{K_{d}}{V}{K_{M} ln (\frac{S_{o}}{S}) + (S_{o} - S)]](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7BK_%7Bd%7D%7Dln%5B1%20-%20%5Cfrac%7BK_%7Bd%7D%7D%7BV%7D%7BK_%7BM%7D%20ln%20%28%5Cfrac%7BS_%7Bo%7D%7D%7BS%7D%29%20%2B%20%28S_%7Bo%7D%20-%20S%29%5D)
Now, putting the given values into the above formula as follows.
t =
= ![-\frac{1}{1.44 \times 10^{-3}s^{-1}}ln[1 - \frac{1.44 \times 10^{-3}s^{-1}}{0.07 mmol/L/s }{K_{M} ln (\frac{45 mmol/L }{9 mmol/L }) + (45 mmol/L - 9 mmol/L )]](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B1.44%20%5Ctimes%2010%5E%7B-3%7Ds%5E%7B-1%7D%7Dln%5B1%20-%20%5Cfrac%7B1.44%20%5Ctimes%2010%5E%7B-3%7Ds%5E%7B-1%7D%7D%7B0.07%20mmol%2FL%2Fs%0A%7D%7BK_%7BM%7D%20ln%20%28%5Cfrac%7B45%20mmol%2FL%0A%7D%7B9%20mmol%2FL%0A%7D%29%20%2B%20%2845%20mmol%2FL%20-%209%20mmol%2FL%0A%29%5D)
= 
= 27.38 min
Therefore, we can conclude that time taken by the enzyme to hydrolyse 80% of the fat present is 27.38 min.
Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
Answer:
Fe2(SO4)3 + 3BaCl2 → 2FeCl3 + 3BaSO4
The pressure would increase. When the temperature change form cold to hot, the gas will find ways to escape from containment. Thus, if it cannot escape that pressure will keep on increasing as the temperature rises.