1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeyben [28]
2 years ago
8

A car with two people traveling down the road has a mass of 100 kg and a velocity of 5 m/s. The car pulls over and picks up two

people. The mass of the car is now 150 kg. What is the new momentum if the velocity stays the same?
Physics
1 answer:
Andrej [43]2 years ago
3 0

Answer:

New_momentum = 750 [kg.m/s]

Explanation:

Momentum is defined as

M  = mass* velocity

Original momentum

M_old = 100 Kg * 5 m/s = 500 [kg.m/s]

If the car pulls over and picks up two people. The mass of the car is now 150 kg, but the velocity stays the same.

New momentum

M_new = 150 Kg * 5 m/s = 750 [kg.m/s]

You might be interested in
An object is thrown directly downward from the top of a very tall building. The speed of the object just as it is released is 17
Softa [21]

Answer:

distance cover is  = 102.53 m

Explanation:

Given data:

speed of object is 17.1 m/s

t_1 = 3.32 sec

t_2 = 5.08 sec

from equation of motion we know that

d_1 = vt_1 + \frac{1}{2} gt_1^2

where d_1 is distance covered in time t1

sod_1 = 17.1 \times 3.32 + \frac{1}{2} 9.8 \times 3.32^2=

d_1 = 110.78 m

d_2 = vt_2 + \frac{1}{2} gt_2^2

where d_2 is distance covered in time t2

d_2 = 17.1 \times 5.08 + \frac{1}{2}\times9.8 \times 5.08^2

d_2 = 213.31 m

distance cover is  = 213.31 - 110.78 = 102.53 m

3 0
3 years ago
hey pls help with this HDJSJDH im rlly bad at this kinda stuff :,) i'll mark the correct answer brainliest
timama [110]
I am pretty sure it’s A
The cue exerts force onto the white ball which pushes the blue ball into the direction of the hole.
7 0
2 years ago
Read 2 more answers
If a runner has a speed of 8.66m/s and runs for 46.2s what distance is covered? tv = d
kati45 [8]

Answer:

\text{Using the formula: }v=\frac{d}{t}\\\therefore vt=d\\\text{Plug and chug:}46.2(8.66)=400.092\text{ metres}

6 0
2 years ago
A 3 kg penguin is pushed by his penguin friends who give him an initial speed vo at the top of a 30 m hill. The penguin is hopin
Strike441 [17]

Answer:

This question can be answered by using conversation of energy.

K_1 + U_1 = K_2 + U_2

\frac{1}{2}mv_{0}^2 + mgh_1 = 0 + mgh_2

\frac{1}{2}(3)v_0^2 + (3)(9.8)(30) = (3)(9.8)(45)\\\frac{1}{2}(3)v_0^2 = 441\\v_0^2 = 294\\v_0 = 17.14 m/s

Explanation:

Note that we take K_2 = 0 because we are looking for the minimum initial speed for the penguin to reach the top of the second hill. Any other speed more than this will already be enough for him.

7 0
3 years ago
A train travels due north in a straight line with a constant speed of 100 m/s. Another train leaves a station 2,881 m away trave
damaskus [11]

Answer:

The trains will collide at a distance 1660 m from the station

Explanation:

Let the train traveling due north with a constant speed of 100 m/s be Train A.

Let the train traveling due south with a constant speed of 136 m/s be Train B.

From the question, Train B leaves a station 2,881 m away (that is 2,881 m away from Train A position).

Hence, the two trains would have traveled a total distance of 2,881 m by the time they collide.

∴ If train A has covered a distance x m by the time of collision, then train B would have traveled (2881 - x) m.

Also,

At the position where the trains will collide, the two trains must have traveled for equal time, t.

That is, At the point of collision,

t_{A} = t_{B}

t_{A} is the time spent by train A

t_{B} is the time spent by train B

From,

Velocity = \frac{Distance }{Time }\\

Time = \frac{Distance}{Velocity}

Since the time spent by the two trains is equal,

Then,

\frac{Distance_{A} }{Velocity_{A} }  = \frac{Distance_{B} }{Velocity_{B} }

{Distance_{A} = x m

{Distance_{B} = 2881 - x m

{Velocity_{A} = 100 m/s

{Velocity_{B} = 136 m/s

Hence,

\frac{x}{100} = \frac{2881 - x}{136}

136(x) = 100(2881 - x)\\136x = 288100 - 100x\\136x + 100x = 288100\\236x = 288100\\x = \frac{288100}{236} \\x = 1220.76m\\

x≅ 1,221 m

This is the distance covered by train A by the time of collision.

Hence, Train B would have covered (2881 - 1221)m = 1660 m

Train B would have covered 1660 m by the time of collision

Since it is train B that leaves a station,

∴ The trains will collide at a distance 1660 m from the station.

7 0
3 years ago
Other questions:
  • How long is a year on Earth and what journey does the Earth make in this space of time?
    8·2 answers
  • The average speed of a car that travels 500 km in 5 hours is
    7·1 answer
  • One disadvantage of cloning is
    13·1 answer
  • How much energy is required to remove a proton from 157N? The masses of the atoms 157N, 146C and 11H are 15.000109 u, 14.003242
    6·1 answer
  • PLEASE HELP!!
    13·1 answer
  • You drive on Interstate 10 from San Antonio to Houston, half the time at 51 km/h and the other half at 71 km/h. On the way back
    7·1 answer
  • You have a chart that illustrates a series of species with their common ancestor. This chart is a
    10·1 answer
  • What is measurement ?
    14·1 answer
  • A 12 kg<br> mass is lifted to a height of 2 m. What is its potential energy<br> at this position?
    5·2 answers
  • A pail in a water well is hoisted by means of a frictionless winch, which consists of a spool and a hand crank. When Jill turns
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!