The composite material is composed of carbon fiber and epoxy resins. Now, density is an intensive unit. So, to approach this problem, let's assume there is 1 gram of composite material. Thus, mass carbon + mass epoxy = 1 g.
Volume of composite material = 1 g / 1.615 g/cm³ = 0.619 cm³
Volume of carbon fibers = x g / 1.74 g/cm³
Volume of epoxy resin = (1 - x) g / 1.21 g/cm³
a.) V of composite = V of carbon fibers + V of epoxy resin
0.619 = x/1.74 + (1-x)/1.21
Solve for x,
x = 0.824 g carbon fibers
1-x = 0.176 g epoxy resins
Vol % of carbon fibers = [(0.824/1.74) ÷ 0.619]*100 =<em> 76.5%</em>
b.) Weight % of epoxy = 0.176 g epoxy/1 g composite * 100 = <em>17.6%</em>
Weight % of carbon fibers = 0.824 g carbon/1 g composite * 100 = <em>82.4%</em>
Answer:
the (air) atmosphere
Explanation:
it fast go to the atmosphere
Answer:
Explanation:
1. the 1/2 reaction that occurs at the cathode
3Cl2(g) +6e^- -------------> 6Cl^- (aq)
2 the 1/2 reaction that occurs at the anode
2MnO2(s) + 8OH^-(aq) ----------> 2MnO4^- (aq) + 4H2O(l) +6e^-
2MnO2(s) + 8OH^-(aq) ----------> 2MnO4^- (aq) + 4H2O(l) +6e^-
E0 = -0.59v
3Cl2(g) +6e^- -------------> 6Cl^- (aq)
E0 = 1.39v
3Cl2 (g) + 2MnO2 (s) + 8OH^(−) (aq)---------> 6Cl^(−) (aq) + 2MnO4^(−) (aq) + 4H2O (l)
E0cell = 0.80v
Answer:
T2 =21.52°C
Explanation:
Given data:
Specific heat capacity of sample = 1.1 J/g.°C
Mass of sample = 385 g
Initial temperature = 19.5°C
Heat absorbed = 885 J
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
885J = 385 g× 1.1 J/g.°C×(T2 - 19.5°C )
885 J = 423.5 J/°C× (T2 - 19.5°C )
885 J / 423.5 J/°C = (T2 - 19.5°C )
2.02°C = (T2 - 19.5°C )
T2 = 2.02°C + 19.5°C
T2 =21.52°C