Answer:
Intermolecular forces (IMF) (or secondary forces) are the forces which mediate interaction between atoms, including forces of attraction or repulsion which act between atoms and other types of neighboring particles, e.g. atoms or ions. Intermolecular forces are weak relative to intramolecular forces – the forces which hold a molecule together. For example, the covalent bond, involving sharing electron pairs between atoms, is much stronger than the forces present between neighboring molecules. Both sets of forces are essential parts of force fields frequently used in molecular mechanics.
Explanation:
Answer:
3.6 times 10^4
Explanation:
Scientific notation is between 1-9. So, we move 36000 to 4 decimal places. SO it would be 3.6 times 10^4. Scientific Notation always has the base of 10 . Enjoy :)
The question is typed wrong. Assuming the correct question is
How many liters of 0.98 M H2SO4 solution would react completely with 3.5 moles Ca(OH)2 ?
Answer:-
3.571 litres
Explanation:-
The balanced chemical equation for this reaction is
H2SO4 + Ca(OH)2 = CaSO4 + 2 H2O
From the balanced chemical equation we see that
1 mole of Ca(OH)2 reacts with 1 mol of H2SO4.
∴3.5 moles of Ca(OH)2 reacts with 1 x 3.5 / 1 = 3.5 mol of H2SO4.
Strength of H2SO4 = 0.98 M
Volume of H2SO4 required = Number of moles of H2SO4 / Strength of H2SO4
= 3.5 moles / 0.98 M
= 3.571 litre
Answer:
7. A) I, II
; 8. D) 2.34e9 kJ
Step-by-step explanation:
7. Combustion of ethanol
I. The negative sign for ΔH shows that the reaction is exothermic.
II. The enthalpy change would be different if gaseous water were produced.
That's because it takes energy to convert liquid water to gaseous water, and this energy is included in the value of ΔH.
III. The reaction is a redox reaction, because
- Oxygen is reacting with a compound
- The oxidation number of C increases
- The oxidation number of O decreases.
IV. The products of the reaction occupy a smaller volume than the reactants, because 3 mol of gaseous reactant are forming 2 mol of gaseous product.
Therefore, only I and II are correct.
7. Hindenburg
Data:
V = 2.00 × 10⁸ L
p = 1.00 atm
T = 25.1 °C
ΔH = -286 kJ·mol⁻¹
Calculations:
(a) Convert temperature to kelvins
T = (25.1 + 273.15) K = 298.25 K
(b) Moles of hydrogen
Use the <em>Ideal Gas Law</em>:
pV = nRT
n = (pV)/(RT)
n = (1.00 × 2.00 × 10⁸)/(0.082 06 × 298.25) = 8.172 × 10⁶ mol
(c) Heat evolved
q = nΔH = 8.172 × 10⁶ × (-286) = -2.34 × 10⁹ kJ
The hydrogen in the Hindenburg released 2.34e9 kJ
.
It is the R group or the variable group that determines the chemical properties of alcohols and amines. Depending on the number of polar and non polar groups and other molecular parts.