The formula for the momentum is
p = mv
As a consequence of the conservation of energy, there is also the law of conservation of momentum.
So,
Δp = Δmv = mΔv
The maximum precision that the position can be ascertained is less than 100% because of dissipation.
Answer:
1. 1 s = 1 x 10⁶ μs
2. 1 g = 0.001 kg
3. 1 km = 1000 m
4. 1 mm = 1 x 10⁻³ m
5. 1 mL = 1 x 10⁻³ L
6. 1 g = 100 dg
7. 1 cm = 1 x 10⁻² m
8. 1 ms = 1 x 10⁻³ s
Explanation:
1.
1 x 10⁻⁶ s = 1 μs
(1 x 10⁻⁶ x 10⁶) s = 1 x 10⁶ μs
<u>1 s = 1 x 10⁶ μs</u>
2.
1000 g = 1 kg
1 g = 1/1000 kg
<u>1 g = 0.001 kg</u>
3.
<u>1 km = 1000 m</u>
<u></u>
4.
<u>1 mm = 1 x 10⁻³ m</u>
<u></u>
5.
<u>1 mL = 1 x 10⁻³ L</u>
<u></u>
6.
1 x 10⁻² g = 1 dg
(1 x 10⁻² x 10²) g = 1 x 10² dg
<u>1 g = 100 dg</u>
<u></u>
7.
<u>1 cm = 1 x 10⁻² m</u>
<u></u>
8.
<u>1 ms = 1 x 10⁻³ s</u>
<u>A</u> would be the answer, since it would take about 3 hours to cover most of it, 10km/h would be the average speed.
really hope this helps.
The correct answer would be True!
Take east to be the positive direction. Then the resultant force from adding <em>F</em>₁ and <em>F</em>₂ is
<em>F</em>₁ + <em>F</em>₂ = (-45 N) + 63 N = 18 N
which is positive, so it's directed east.
To this we add a third force <em>F</em>₃ such that the resultant is 12 N pointing west, making it negative, so that
18 N + <em>F</em>₃ = -12 N
<em>F</em>₃ = -30 N
So <em>F</em>₃ has a magnitude of 30 N and points west.