All fluids exert pressure like the air inside a tire. The particles of fluids are constantly moving in all directions at random. As the particles move, they keep bumping into each other and into anything else in their path. These collisions cause pressure, and the pressure is exerted equally in all directions.
Gravity is affected by mass and distance
The sun’s gravitational attraction and the planet’s inertia keeps planets moving is circular orbits.
Explanation:
The planets in the Solar System move around the Sun in a circular orbit. This motion can be explained as a combination of two effects:
1) The gravitational attraction of the Sun. The Sun exerts a force of gravitational attraction on every planet. This force is directed towards the Sun, and its magnitude is

where
G is the gravitational constant
M is the mass of the Sun
m is the mass of the planet
r is the distance between the Sun and the planet
This force acts as centripetal force, continuously "pulling" the planet towards the centre of its circular orbit.
2) The inertia of the planet. In fact, according to Newton's first law, an object in motion at constant velocity will continue moving at its velocity, unless acted upon an external unbalanced force. Therefore, the planet tends to continue its motion in a straight line (tangential to the circular orbit), however it turns in a circle due to the presence of the gravitational attraction of the Sun.
Learn more about gravity:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
E = 31.329 N/C.
Explanation:
The differential electric field
at the center of curvature of the arc is
<em>(we have a cosine because vertical components cancel, leaving only horizontal cosine components of E. )</em>
where
is the radius of curvature.
Now
,
where
is the charge per unit length, and it has the value

Thus, the electric field at the center of the curvature of the arc is:


Now, we find
and
. To do this we ask ourselves what fraction is the arc length 3.0 of the circumference of the circle:

and this is
radians.
Therefore,

evaluating the integral, and putting in the numerical values we get:

