Probably because the earth is stationary rotating on its axis whereas the baseball is the one doing all of the movement after being thrown
Answer:
Points downward, and its magnitude is 9.8 m/s^2
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform horizontal motion, with constant velocity and zero acceleration. In fact, there are no forces acting on the projectile along the horizontal direction (if we neglect air resistance), so the acceleration along this direction is zero.
- A vertical motion, with constant acceleration g = 9.8 m/s^2 towards the ground (downward), due to the presence of gravity wich "pulls" the projectile downward.
The total acceleration of the projectile is given by the resultant of the horizontal and vertical components of the acceleration. But we said that the horizontal component is zero, therefore the total acceleration corresponds just to its vertical component, therefore it is a vector with magnitude 9.8 m/s^2 which points downward.
Answer: W = 294 J
Explanation: Solution:
Work is expressed as the product of force and the distance of the object.
W = Fd where F = mg
W= Fd
= mg d
= 15 kg ( 9.8 m/s²) ( 2m )
= 294 J
Answer:
0 N
Explanation:
suppose, you push a box with 5 N, and another person pushes the box on the opposite side of the box with 5 N, the net force (resultant ) is 0 N, the box will not move if it wasn't moving
hope this helps
The angular velocity, ω=
2π/t; t = 24 hrs = 24 x 3600 seconds = 86400 s
ω = 7.27 x 10⁻⁵
v = ωr
= 7.27 x 10⁻⁵ x 3242.8 x 1.6 x 1000 (converting miles to meters)
= 377.2 m/s