Answer:
In the Lewis structure of P4 there are 6 bonding pairs and 4 lone pairs of electrons.
Explanation:
The structure of tetrahedral molecule of P4 is provided below.
Each phosphorus atom has 5 valence electrons out of which 3 electrons involve in bonding and the rest 2 electrons exist as a lone pair that does not involve in bonding.Hence each phosphorus atom has one lone pair.In P4 molecule there are phosphorus atoms and hence 4 lone pairs in total.
As you can see in the figure, each phosphorus atom is bonded to the other three atoms.A bond is formed when two atoms share one electron each and the pair is called bonding pair.
From the figure we can see that there are 6 bonds in total.Each bond consist of one bonding pair of electrons and hence in total there are 6 bonding pairs of electrons.
Hence in a P4 molecule there are six bonding pairs and 4 lone pairs of electrons.
Answer:
b. colloid
Explanation:
Colloids are solutions that are going to have a solute and a solvent, but the size of the particles are bigger than in a solution that is clear. that is the reason that it looks blurred because the particles are bigger.
In the other hand, these particles of the solute are big, but not so big and heavy as in a suspension, so they are not going to precipitate in the bottom.
The movement of the particles are called Brownian movement, and they are the responsible to avoid to settle down at the bottom of the recipient.
Answer:
A). It encouraged them to rely on observation and experimentation to support their conclusions.
Explanation:
Answer:

Explanation:

Data:
Mass of NaCl = 4.6 g
Mass of water = 250 g
Calculations:
Mass of solution = mass of NaCl + mass of water = 4.6 g + 250 g = 254.6 g.

The current divides according to the resistance; more current in the lower resistance, less in the higher resistance. This is called “parallel branches” or paths. The voltage is the same for both (all) branches.