Answer:
0.017 N
Explanation:
The relevant relation is ...
F = GMm/r²
where G is the universal gravitational constant, 6.67408 × 10^-11 m^3·kg^-1·s^-2, M and m are the masses of the objects, and r is the distance between them.
__
Filling in the given numbers, we find the force to be ...
F = (6.67408 × 10^-11 m^3·kg^-1·s^-2)(8.7 × 10^20 kg)(77 kg)/(1.6 × 10^7 m)^2
where m in this expression is the unit "meters".
F = 6.67408 · 8.7 · 77/2.56 × 10^(-11 +20 -2·7) N ≈ 0.017 N
The asteroid exerts a force of about 0.017 N on Sally.
__
<em>Additional comment</em>
That's about 0.000023 times the force of Earth's gravity.
Earth was the center of the universe
<h2>
Hello!</h2>
The answer is:
The first option, the force tending to lift Rover is equal to 14.5 N.
<h2>
Why?</h2>
To calculate the force that is tending to lift Rover vertically, we need to calculate the vertical component force.
Since we know that the angle between the force and the ground is 29°, we can calculate the vertical component of the force using the following formula:

We are given that the force is equal to 30.0 N, so, calculating we have:


Also, we can calculate the horizontal component of the force using the following formula:


Hence, we have that the correct option is the first option, the force tending to lift Rover is equal to 14.5 N.
Have a nice day!
Electrical energy is used to run the fan
Here as per given condition 750 J of electrical energy is used to run the fan which is converted into Kinetic energy as 400 J
So here we can see that 350 J of energy is lost against many other type of frictional and resistive loses.
So here we can say that out of 750 J of energy only 400 J is used to run the fan and rest amount of energy is lost against friction.
also we can say that efficiency of this fan will be


