Answer:
The answer is choice A.
Explanation:
Assuming you are in a situation with a gravitational field. You can divide the motion of the bullet into two components. One horizontal and the other in the vertical.
Answer:
Force(Romeo moving) = 5,000 N
Explanation:
Given:
Mass of horse = 900 kg
Acceleration = 20 km/hr
Find:
Force(Romeo moving)
Computation:
Acceleration = 20 km/hr
Acceleration in m/s = 20 / 3.6 = 5.555556 m/s²
Force = m x a
Force(Romeo moving) = 900 x 5.555556
Force(Romeo moving) = 5,000 N
The minimum value of the coefficient of static friction between the block and the slope is 0.53.
<h3>Minimum coefficient of static friction</h3>
Apply Newton's second law of motion;
F - μFs = 0
μFs = F
where;
- μ is coefficient of static friction
- Fs is frictional force
- F is applied force
μ = F/Fs
μ = F/(mgcosθ)
μ = (250)/(50 x 9.8 x cos15)
μ = 0.53
Thus, the minimum value of the coefficient of static friction between the block and the slope is 0.53.
Learn more about coefficient of friction here: brainly.com/question/20241845
#SPJ1
The velocity with which the jumper leaves the floor is 5.1 m/s.
<h3>
What is the initial velocity of the jumper?</h3>
The initial velocity of the jumper or the velocity with which the jumper leaves the floor is calculated by applying the principle of conservation of energy as shown below.
Kinetic energy of the jumper at the floor = Potential energy of the jumper at the maximum height
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the initial velocity of the jumper on the floor
- h is the maximum height reached by the jumper
- g is acceleration due to gravity
v = √(2 x 9.8 x 1.3)
v = 5.1 m/s
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
There would be martial law (just elaborate on the definition) and the population would go awry(elaborate on subject)